
il iifi'iiiwii>Himiiitiwii<fiiiiiii-ii¥iiiwwii'ii'riiiifmiinntïj 

TECHNICAL BULLETIN NO/210 FEBRUARY, 1931 

CORRELATION ALINEMENT CHARTS 
IN FOREST RESEARCH 

A METHOD OF SOLVING PROBLEMS 
IN CURVILINEAR MULTIPLE 

CORRELATION 

By 

DONALD BRUCE 
Senior SihicúUurist 

and 

L. H. REINEKE 
Assistant Sihiculturist, Branch of Research 

Forest Service 

UNITED STATES DEPARTMENT OF AGRICULTURE, WASHINGTON, D. C. 



TECHNICAL BULLETIN NO. 210 FEBRUARY, 1931 

UNITED STATES DEPARTMENT OF AGRICULTURE 
WASHINGTON, D. 0. 

CORRELATION ALINEMENT CHARTS IN FOREST 
RESEARCH : A METHOD OF SOLVING PROBLEMS 

IN CURVILINEAR MULTIPLE CORRELATION 

By DONALD BRUCE, Senior Silviculturist, and L. H. REINEKE, Assistant Silvi- 
cuUurist, Branch of Research, Forest Service 

CONTENTS 

Page 
Advantages and limitations of the graphic 

method  
Statistical measures  

The standard error as a measure of curve 
accuracy  

Standaid deviation  
Alienation index _  
Correlation index _  
Multiple correlation; improving the esti- 

mate by the use of additional variables- 
Regression equation  
Alienation and correlation ooeflQcients... 
Relative advantages and disadvantages of 

the statistical and the graphic methods. 
Graphic methods of checking curve fit  

Residual curve i  
Curve of relation between measured and 

estimated values ^   
Multiple regression equation. _  
Curvilinear multiple correlation   
The correlation alinement chart illustrated by 

an example       24 
Construction of the alinement charts needed.      37 
Preliminary analysis of the problem  
Collection of data   
Example of an analysis of causes and eâect... 

Objective, analysis, and solution of the 
problem  

Graduating curves _.. 
Computation of residuals by abridged 

method  
Use of correction distances in altering the 

graduating curve _  
Final correction-  
Interpretation of results  

Example involving the development of a 
gredicting mechanism. _  

B alinement chart _  
Regression lines  
Graduating curves from regression curves. 
Effect of intercorrelation of two inde- 

pendent variables. _  
Complex problems and inadequate data  
Time series....  
Minor variations in technic   

Use of ratios _._  
Grouped data   
Incommensurable variables __  
Effect of Wgh intercorrelation of inde- 

pendent variables   
Variables with small regression coeffi- 

cients but with considerable curvature. 
Assimied charts.  
Initial corrections.. i  
Use of knowledge of curve form  
Residuals in terms of an auxiliary regular 

scale  
Field of application _ _._ 
Criteria of applicability. _   
Summary.   
Appendix _  

Short-cut methods  
Symbols  
Formulae _ __ 

A partial list of statistical literature.  
Books and articles   
Mimeographed materia   
Statistical periodicals   

Page 

64 
56 
60 
61 

65 
67 
68 
68 
68 

70 
71 
71 

73 
74 
74 
75 
76 
76 
79 
79 
85 
85 
87 
87 

ADVANTAGES AND LIMITATIONS OF THE GRAPHIC METHOD 

Problems in forest research almost inevitably involve a considera- 
tion of the relations between two or more variable factors. Results 
depend, for example, on the increase of tree diameter or volume with 
age, on the influence of site, on the vitahty of seed, or on other similar 
relations.   Although the relation is sometimes one involving cause 
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and effect, this is by no means essential. The interrelation between 
height and diameter may be of importance although neither is the 
cause of the other, the two being more or less closely interrelated 
because they result from causes which are in part common to both. 
Often, moreover, the investigation is not restricted to a pair of vari- 
ables but concerns the association of one with two or more others, 
as in preparing yield tables where the relation is sought between both 
age and site and such factors as volume per acre. In some cases 
there is no certain advance knowledge as to what variables are in- 
volved, and the first step in the study must be to ascertain what 
factors are related and what are not. 

The graphic method has conventionally been used in solving such 
problems. It has many advantages, chief among which are its celer- 
ity and flexibihty. Unfortunately, it lends itself to careless technic 
and so has led to many false conclusions. This has been caused in 
part by inherent weaknesses in the method and in part by an inade- 
quate analysis of potential sources of error, together with a poorly 
developed technic for checking the results obtained. There is need 
for further development along quantitative lines. 

The modem statistical mettod suppUes a powerful and dehcate 
machinery to replace or supplement the simple graphs which foresters 
have ordinarily used. Its drawbacks are greater intricacy and 
apparently greater laboriousn^ss. However, its apparent intricacy 
disappears with use, and the labor involved is more formidable in 
appearance than in reality. The greater delicacy of the method 
usually permits a given degree of accuracy to be obtained with a much 
smaller number of data, providing they are accurate; and in many 
cases the saving of time in collecting data will more than offset any 
increased labor in analymg them. Until recently a third drawback 
was the rigidity of the method. Its usefulness was restricted to those 
cases where, graphically, a straight line might be used without serious 
error or (with a large increase in the labor involved) to those where 
the imderlying curve was of a type for which the form of equation 
was known. Hecently, however, a new statistical method (P),^ ^ par- 
tially graphic in its technic, has been devised which is free from this 
disadvantage and which appears particularly suited to forestry 
problems. It is this method which will be described in the follow- 
ing pages.^ Before discussing it, it will be necessary to explain the 
criteria by means of which the adequacy of any method may be 
judged, for only in this way can the advantages of the new technic 

e fully appreciated. By means of this dißcjassion, moreover, it wül 
be possible to define and explain the statistical conceptions used in 
terms of the graphs with which foresters are famihar, instead of on a 
purely mathematical basis. 

1 Italic numbers in parentheses refer to the Partial List of Statistical Literature, p. 85. 
« This new method was originated-by Mordecai Ezekiel, Bureau of Agricultural Economics. As herein 

presented it has been iaíuil$p^t>h(^iQed. These mMificatiôns include the use of alinement charts, the 
mvestigation of a possible fictional form of the dependent variable, and a new type of flnál correction. 
These changes considerably reduce the labor involved and increase flexibility. 
' * The authors acknowledge the very valuable assistance in the preparation of the matertel here pre- 
sented, rendered by Misses Mary L. Denoyer, Luçile L. Gumaer, and Theresa Hoerner, statistical clerks 
in the Office of Forest Measuremœits. 
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STATISTICAL MEASURES 

THE STANDARD ERROR AS A MEASURE OF CURVE ACCURACY 

One of the primary purposes of any curve is to permit estimation 
of values of one factor from given values of another. It is useful 
perhaps to be able to estimate the height of a tree if its age is known, 
or the number of trees per acre in a stand if the ages and site quaUties 
of the stand are given. Judged from this point of view the success 
of any curve may be measured in terms of the accuracy which results 
from such a use. If the curve is based on an adequate sample of the 
material to which it is to be apphed, the accuracy of such appHcation 
is essentially the same as that which will result from applying the 
curve to the basic data. The latter may be readily determined by 
estimating values for each datum and then comparing these estimates 
with the values actually measured. Only exceptionally in forestry 
has accuracy been thus determined. In most cases indeed the curve 
drawing has been so carried out as to obscure it completely. 

To illustrate this statement, Figure 1, based on hypothetical meas- 
urements of age and diameter, has been prepared. The lower por- 
tion, C, represents the usual manner in which curves are drawn and 
presented. The individual measurements have been sorted into 10- 
year age classes and average diameters for these age classes have been 
plotted and assigned weights equal to the number of data in each. 
The advantage in this procedure is that the drawing of the curve is 
easier, particularly if the individual values are widely scattered. In 
Figure 1, B, the individual values have been plottedj A zone of 
points results which, in this instance, has such narrow limits that the 
curve could have been drawn readily without computing and plotting 
averages. Figure 1, A, shows a case of wider dispersion where the 
curve location would have been somewhat less certain, and where 
averaging is clearly advisable. The point of interest, however, is 
that the values used in A and B have been so chosen that C may be 
derived from either. If average points are plotted, the two cases will 
appear identical, yet obviously they are not. It is clear that in case B 
the diameter of any individual tree may be estimated by means of the 
curve with far less average error than in case A. Curve B must then 
be considered the more effective of the two. Its greater reliability is 
completely concealed when form C is used. 

A measure of the accuracy of estimate, the average error, can readily 
be obtained for either A or B. Its computation is fllustrated by Table 
1. Columns 1, 2, and 6 show the age and diameter as actually meas- 
ured. Columns 3 and 7 show the diameter as estimated from the 
age by means of the curve of Figure 1, A. In columns 4 and 8 are 
entered the residuals, a term which is used for the dififerences between 
the measured and estimated values. Where the measured exceeds 
the estimated value the residual is considered positive, and otherwise 
negative. The sum of columns 4 or 8 (disregarding signs) divided by 
the number of observations is the average error. Column 5 (and 9) 
should be disregarded for the time being. 
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TABLE 1.—Computation of average error and standard error for Figure 1, A and B 

Curve A Curve B 

Age 

(1) 

Measured 
diameter 

(2) 

Diameter 
estimated 

from 
curve 

(3) 

Residual 

(4) 

Residual 
squared 

(6) 

Measured 
diameter 

(6) 

Diameter 
estimated 

from 
curve 

(7) 

Residual 

(8) 

I^esidual 
squared 

(9) 

15 —  5.0 
10.7 
9.6 

17.0 
9.7 

17.5 
17.0 
20.5 
22.0 
15.0 
24.5 
27.0 
21.1 
19.0 
25.0 
27.0 
26.0 
21.5 
26.1 
23.5 

6.5 
9.2 

11.0 
12.5 
14.2 
16.0 
18.5 
19.0 
20.5 
21.0 
21.5 
22.5 
22.6 
23.5 
23.5 
24.0 
24.5 
24.5 
24.6 
25.0 

-1.5 
+1.5 
-1.5 
+4.5 
-4.5 
+1.5 
-1.5 
+1.5 
+1.5 
-6.0 
+3.0 
+4.5 
-1.5 
-4.5 
+1.5 
+3.0 
+1.5 
-3.0 
+1.5 
-1.5 

2.25 
2.25 
2.25 

20.25 
20.25 
2.25 
2.25 
2.25 
2.25 

36.00 
9.00 

20.25 
2.25 

20.25 
2.25 
9.00 
2.26 
9.00 
2.25 
2.26 

6.0 
9.7 

10.5 
14.0 
12.7 
16.5 
18.0 
19.5 
21.0 
19.0 
22.5 
24.0 
22.1 

•      22.0 
24.0 
25.0 
25.0 
23.6 
26.1 
24.6 

6.5 
9.2 

11.0 
12.6 
14.2 
16.0 
18.6 
19.0 
20.5 
21.0 
21.6 
22.5 
22.6 
23.6 
23.5 
24.0 
24.5 
24.5 
24.6 
26.0 

-0.5 
+.6 
-.6 

+1.5 
-1.5 
+.6 
-.6 
+.6 
+.5 

-2.0 
+1.0 
+1.5 
-.5 

-1.5 
+.6 

+1.0 
+.5 

-1.0 
+.6 
-.6 

0.25 
19  .25 
22 -... .--.. .25 
25     - 2.25 
29.__   2.2Ö 
34 .25 
43    .25 
45  .25 
52 -._ .25 
55 -  4.00 
58 ,    1.00 
65 -  2.26 
66 .25 
75... -  2.26 
75 .25 
81    too 
88  .26 
89    1.00 
91.    .26 
100                         .26 

Total -        . - 384.6 
19.2 

US     .. 

384.6 
19.2 

.0 

.0 
171.00 

8.56 
384.6 

19.2 
384.6 

19.2 
.0 
.0 

19.00 
Average  .95 

Total, disregarding sig 
Average, disregarding 
Rtandarrl «rrnr 

61.0 
2.56 

17.0 
.86 signs  

V8.65 
2.924 ^975 Or  

It should be noted first that in both cases the total of the estimated 
diameters (columns 3 and 7, which are of course identical, since the 
curves are the same) equals the total of the measured diameters (col- 
umns 2 and 6). This is a fundamental criterion * of a correctly fitted 
curve. An inevitable corollary to this fact is that the sums of the 
positive and negative residuals are equal. Hence, the algebraic sums 
of columns 4 and 8 are zero. In actual practice this last fact is the 
more usable, and in curve fitting the differences between the curve 
and all points above it may be quickly summed and compared with a 
similar value for all points below the curve. If they are not approxi- 
mately equal, the curve should be so shifted as to eliminate any ma- 
terial difference. This test can be applied equally well to a graph of 
form 1, C, by weighting (multiplying) each difference by the number 
of observations involved therein. 

The dissimilarity between the data for A and B is brought out by 
the average residuals (last values in columns 4 and 8), disregarding 
signs in the computation. It is apparent that the average error of 
estimate is nearly three times as great in case A as in case B, for if 
curve A is used the diameters estimated wiU be in error by an average 
of 2.55 inches, while if B is used this average error will be reduced to 
0.85 inch. 

A somewhat better measure of accuracy than this has been devised. 
It is called the ''standard error'' ^ and its calculation is illustrated by 

* Although a curve is thus accurately balanced it may still be so tilted or poorly shaped that it fails to 
fit the data. 

» There is some difference in the usage of statistical terms. Standard error is sometimes used as synon 
yomous with«taaMlard deviation of amean. 
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columns 5 and 9. In computing this each residual is squared, and 
these squares are totaled. Their sum is then divided by the number 
of values involved and the square root extracted. A formula which 
expresses this is—   

SE=^^ (I) 

where SE is the symbol for standard error, Sum signifies the sum of 
all the values for the expression immediately following, e is the residual 
and N is the number of observations used. The standard error is 
superior to the ja,yerage error because it involves the generally accepted 
theory of least squares. On this theory a properly fitted curve of 
given form has a minimum standard error rather than a minimum 
average error. In most cases where the dispersion of points above 
the curve is similar to that below the curve, the standard error is 
approximately one and one-fourth times the average error, but it is 
often unsafe to calculate it in this way. In the present instance the 
standard errors thus calculated would be 3.19 for A, and 1.06 for B. 
These values differ appreciably from the more accurately determined 
standard errors: if or A and B, which are calculated by means of 
columns 5 and 9^ Table 1, and Formula I— 

(A) SE=^i^ = 2.924 

(B) SE=^ ̂   =0.975 

Like the average error, the standard error of A is approximately 
three times that of B, so that in the present case the same relative 
result is obtained by either method of computation. 

Either the standard error or the average error, then, measures the 
accuracy of a curve as a means of predicting values of one variable 
from values of another. It must not be assumed, however, that 
smaU standard errors necessarily mean that the curve which has 
been drawn is useful or that large standard errors imply that it is 
futile. Its effectiveness depends not only on the standard error but 
also on how much variation was originally present. If the variable 
investigated was relatively stable in its values, a small standard 
error might be obtained even with very bad curve fitting, or even 
by estimating without any curve at aU by using the arithmetic 
average. The graphic equivalent of this average is a horizontal 
straight line through its value. To use this obviously disregards 
any possible variation associated with the independent variable. 

What has been accomplished by a curve is, therefore, better judged 
by the relation between the scatter about the curve and the scatter 
of the data as a whole about its arithmetic mean. The measure of 
the scatter about the arithmetic mean is the standard error of the 
points about the horizontal straight line through the average. This 
special case of standard error is called the standard deviation. 

STANDARD DEVIATION 

f For the example already cited, the calculation of the standard 
deviation is shown in Table 2. In the first and fourth columns the 
measured diameters are entered.    These columns are summed and 



COBKELATION ALINEMENT CHABTS IN FOEEST EESEAECH        7 

the averages obtained. The residuals (the différences between the 
individual values and the average), which are in this case called 
''deviations/' are next computed. The calculation of the standard 
deviation then is exactly similar to that of the standard error, the 
formula being— 

SD ■V N ai) 

where SD is the symbol for standard deviation, (¿signifies deviation 
and Ny number of observations. The resemblance to Formula I is 
obvious. The computations in the present case are in columns 2, 3, 
5, and 6. 

TABLE 2.—^ofnvutation of standard deviations for data used in Figure 
l/AandB 

Curve A Curve B 

Measured Deviation 
from 

average 
Deviation Measured Déviation 

: from 
average 

Deviation 
diameter squared diameter squared 

(1) (2) : (3) (4) (6) (6) 

5.0 -14.2 201.64 6.0 -13.2 174,24 
10.7 -8.5 72.25 9.7 -9.6 90.25 
9.5 -9.7 94.09 10.6 -8.7 75.69 

17.0 -2.2 4.84 14.0 -5.2 27; 04 
9.7 -9.5 90.25 12.7 -6.6 42.25 

17.5 -1.7 2.89 16.5 -2.7 7.29 
17.0 -2.2 4.84 18.0 -1.2 1.44 
20.6 +1.3 1.69 19.5 .+•2 .09 
22.0 +2.8 7.84 21.0 +1.8 3.24 
15.0 -4.2 17.64 19.0 -.2 .04 
24.5 +5.3 28.09 22.6 +3.3 10.89 
27.0 +7.8 60.84 24.0 --4.8 23.04 
21.1 +1.9 3.61 22.1 -■2.9 8.41 
19.0 - .2 .04 22.0 --2.8 7.84 
26.0 --6.8 33.64 24.0 --4.8 23.04 
27.0 +7.8 60.84 26.0 --6.8 33.64 
26.0 --6.8 46.24 26.0 --6.8 33.64 
21.5 --2.3 5.29 23.5 --4.3 18.49 
26.1 --6.9 47.61 26.1 --6.9 34.81 

fn<N4-n1 

23.5 -H.3 18.49 24.6 +6.3 28.09 

Uña. A 802.66 
40.13 

384.6 
19.2 

643.46 
32.17 Average.—         19.2 

V40.13 V32.17 
Or               -           -  •       6.33 5.67 

Were nothing known about age, the only possible method of esti- 
mating the diameter of trees from the material at hand would be to 
guess that each one was of average diameter; in other words to 
estimate by means of a horizontal line such as has been mentioned. 
Individual errors would be large, although in the long run compensat- 
ing, if the material is an adequate sample of the diameters. The use 
of the diameter-age curve permits a decided improvement^ in 
estimating as is shown by the fact that the standard^ error is only 
2.924 in case A, while the corresponding standard deviation is 6.33. 
Similar vahies in case B are 0.975 and 5.67. 

• This estimate of improveEaent is oônservative. It is reíatively easy to secure sample measuremente 
of diameter and age, which adequately retJresent their relation in the stand in which they are taken, buch 
measurements, however, may be entirely inadequate for determim'ng either the average diameter or 
average age.   A sample suitable for determining such averages can best be obtained by a strip survey. , 
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ALIENATION INDEX 

The estimating is not perfect, of course, even where the curve is 
used, as is shown by the existence of these residual standard errors of 
2.924 and 0.975. Estimates are, however, materially improved by 
using the curve, and it is helpful to measure this improvement. 
The ratio between the residual variation and the original variation is 
known as the ''alienation index.''    Expressed as a formula— 

^j=§ (III) 

where AI is the symbol for alienation index, SE signifies standard 
error, and SD signifies standard deviation. It is obvious that the 
values of this index may range from 0 to 1.00.' In the present in- 

stances these alienation indices are (A) ^'«^»^ = 0.462, and (B) ~T~äy~^ 

0.172. This means that 46.2 and 17.2 per cent of the variability in 
diameter is associated with factors other than age. Among these 
factors, however, errors in fitting the curve may be included. 

CORRELATION INDEX 

The "correlation index'' is another and more commonly used meas- 
ure of this improvement. It may be derived from the alienation 
index by means of the formula: 

(77=VM37P (IV) 

where CI signifies correlation index, and AI alienation index. If 
the alienation index is 1 (the maximum possible value) the correlation 
index is evidently 0, whüe if the alienation index is 0 (only possible 
where the standard error is 0), then the correlation index is 1. This 
fixes the limits of possible values for the correlation index. The 
alienation index measures the association between the dependent 
variable and other unconsidered factors; the correlation index only 
indicates the association between the dependent variable and that 
independent variable which was considered. Complete association is 
shown by a correlation index of 1, while entire absence of association 
is shown by a correlation index of 0. Intermediate values show par- 
tial association. Unfortunately, a correlation index of 0.50 does not 
mean that half of the variation present in one variable is associated 
with the other variable used. The best way to interpret a correlation 
index is to compute the corresponding aUenation index. By substi- 
tuting in the foregoing formula the values of the alienation indices, 
which are 0.462 and 0.172, in the present case, the correlation indices 
are found to be 0.887 and 0.985, respectively. To avoid computation, 
approximate values ^ may be read from Figure 2. 

It will be seen that both the standard error and the alienation or 
correlation index are useful as measures of accomplishment and that 
neither gives complete information without the other.    The standard 

' A value greater than 1.00 can conceivably be obtained, but only through grotesque misfitting of a curve. 
Such a value indicates that the curve not only has no utility but is completely misleading and should be 
discarded. 

• See also Miner (50). 
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error shows in absolute units how accurately the value of a variable 
may be estimated from values of another; it does not show whether 
an estimate might have been made as accurately or nearly as accurately 
without it. The aUenation index is a more abstract value measuring 
the relative improvement of estimate consequent on the use of a 
certain independent variable, but it does not show the amount of 
error remaining.    Both measures should ordinarily be calculated. 
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FIGURE 2.—The relation between alienation and correlation indices Is shown by this curve. It 
may be used to obtain, without computation, approximate values of either when the other is 
known 

MULTIPLE CORRELATION; IMPROVING THE ESTIMATE BY THE USE OP ADDITIONAL 
VARIABLES 

Where the coefficient of alienation is high, the possibility of further 
improving the estimate by the use of one or more additional variables 
suggests itself. Volume tables afford a common example. These may 
be prepared on the basis of diameter alone, but the resulting standard 
error and alienation index will prove to be large. It is customary to 
include height as an additional independent variable. The graphic 
result of this is the familiar set of harmonized curves. The accuracy 
of estimate should be, and is, improved by this treatment. The 
calculation of the standard error, alienation index, and correlation 
index is entirely analogous to that of the 2-variable case just discussed. 
In reading the '^estimated volumes from curve" in this case, it will 

8553—31 2 
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be necessary to interpolate between the curves. This adds conr 
sidèrably to the labor involved. 

For this and other reasons the graphic method is difficult where 
there are three variables and hardly suitable to problems involving 
more than three, although some eiïort has been made to adapt it to 
four, as for taper curves. 

The terms '*multiple ahenation index'' and ''multiple correlation 
index" are used to distinguish such three or more variable cases 
from those where but two variables are involved. 

It has now been shown that such statistical conceptions as the 
standard error and the alienation index may be applied to the curves 
or systems of harmonized curves with wMch foresters are familiar. 
It has also been shown that they give us a quantitative measure of 
the utiHty of these curves. Certain substitutes for free-hand curve 
drawing will next be described and the relative adequacy of the results 
discussed. 

REGRESSION EQUATION 

When data are plotted as in Figure 1, it may be that a straight line 
is defined instead of a curve. When this is so, statistical methods 
offer a purely mathematical means of locating, with rigorous accuracy, 
the best position of this straight line by calculating its equation 
known as the regression equation. Being the equation of a straight 
line it must be of the type— 

Y^AX+B 

where Y is the dependent variable, X the independent variable, and 
A and B are constants which must be determined from the data at 
hand. 

These constants may be computed by the standard method of least 
squares, but the same results may be obtained by the appHcation of 
the relatively simple product moments formula— 

^-^r+^^iX-M.) (V) 

where X is the independent variable, Y the dependent variable, Mx 
the arithmetic mean of X, My the arithmetic mean of F, and dx and 
dy the deviations of X and Y from their means. 

In statistical work it is not uncommon to calculate this equation 
even where it is not definitely known that the relation is strictly 
rectilinear. This may be because any curvilinear trend present is 
poorly defined, or because the straight-line value is useful as a first 
approximation, as will later be explained. It is, therefore, not un- 
reasonable to use the material already presented in Table 1 as an 
example of this process.    The data for curve B only will be used. 

The form of computation is shown in Table 3. Columns 1 and 4 
Hst the measurements. Column 2 contains the deviations of the 
individual ages from their mean, with the signs noted. Colunm 3 
contains these values squared. These two columns are similar to 
columns 5 and 6 in Table 2. In column 5 are listed similar deviations 
for diameter. Column 6 is not used in the present computation. In 
column 7 are the products, for each item, of its deviation in age and 
in diameter. As indicated at the bottom of the table, the equation 
becomes: 
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Diameter = 0.202 Age+ 7.85 

Figure 3 shows the line representing this equation plotted through 
the zone of points upon which it is based. 

35 

SO 

^^—_ — 

+ 

0     10     20     30     40     50     60     70     80     90     100    110 
>yge (years) 

FiGUBE 3.—The regression line for the data used in Figure 1, B.   This is the straight line which 
best fits the plotted points, but it is obviously less satisfactory than the curve of Figure 1, B 

TABLE 3.—Calculation of regression equation from data of Figure 1, B 

Product 
Deviation Age Deviation Diameter of diameter 

Age of age from deviation Diameter of diameter deviation deviation 
mean squared from mean squared and age 

deviation 

(1) (2) (3) (4) (6) (6) (7) 

16 -41.35 1,709.8 6.0 -13.2 174.24 +645.82 
19 -37.35 1,395.0 9.7 -9.6 90.25 +354.82 
22 -34.35 1,179.9 10.6 -8.7 75.69 +298.84 
25 -31.35 982.8 14.0 -5.2 27.04 +163.02 
29 -27.35 748.0 12.7 -6.6 42.25 +177.78 
34 -22.35 499.5 ■ 16.5 -2.7 7.29 +60.34 
43 -13.35 178.2 18.0 -1.2 1.44 +16.02 
45 -11.35 128.8 19.6 +.3 .09 -3.40 
52 -4.35 18.9 21.0 +1.8 3.24 -7.83 
65 -1.35 1.8 19.0 -.2 .04 +.27 
68' +1.65 2.7 22.6 +3.3 10.89 +5.44 
66 +8.65 74.8 24.0 -H.8 23.04 +41.52 
66 +9.65 93.1 22.1 +2.9 8.41 +27.98 
76 --18.65 347.8 22.0 +2.8 . 7.84 +62.22 
76 --18.65 347.8 24.0 -H.8 23.04 +89.62 
81 --24.65 607.6 25.0 +6.8 33.64 --142.97 
88 --31.65 1,001.7 25.0 +5.8 33.64 --183.6r 
89 --32.65 1,066.0 23.5 -H.3 18.49 --140.40 
91 ^-34.65 1,200.6 25.1 +6.9 34.81 --204.44 

100 -H3.65 1,905.3 24.5 +6.3 28.09 +231.34 

Tntftl 1.197 13,490.1 384.6 643.46 2,725.08 
Mftftn^                  ßß.3i5 19.23 

Standard deviatioi l._„_  26.0 6.67 

(V) Diameter-MDU.+^^^f^'(Age-AfA..) 
9 70K Oft 

-0.202 Age+7.85 
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ALIENATION AND CORRELATION COEFFICIENTS 

It is obvious that the curve in Figure 3 fits the points less well than 
did the curve of Figure 1. How much less can be determined quanti- 
tatively by comparing its standard error with that of the curve. This 
standard error is computed from estimated values read from the 
straight line or calculated directly from the equation.. The result, 
shown in Table 4, is 2.15.    By equation III, then, the aUenation 

2 15 * . 
index is ^^ = 0.379.    By equation IV the corresponding correlation 

index is—   
Vl-(0.379)2 = 0.925 

In such a case as this, however, the alienation index and the correla- 
tion index are called the alienation coefficient and correlation coeffi- 
cient. The only difference between the index and the coefficient is 
that the coefficient is based on a straight line instead of a curve. The 
coefficients may, therefore, be considered merely as special cases of 
the more general indices. They are, however, more widely used, 
largely because they can be computed directly by a shorter method 
which does not involve the use of estimated values of the independent 
variables. This method does not apply except where straight Unes 
are used. 

TABLE 4.—Calculation of standard error from the regression equation. Diameter= 
0.202 Age^-r.86 

Diameter 

Age Measured 
diameter 

estimated 
from 

regression 
equation 

Residual Residual 
squared 

(1) (2) (3) (4) (5) 

15 6.0 10.9 -4.9 24.01 
19 9.7 11.7 -2.0 4.00 
22 10.5 12.3 -1.8 3.24 
25 14.0 12.9 +1.1 1.21 
29 12.7 13.7 -1.0 1.00 
34 16.5 14.7 +1.8 3.24 
43 18.0 16.5 +1.5 2.25 
45 19.6 16.9 +2.6 6.76 
52 21.0 18.4 +2.6 6.76 
65 19.0 19.0 .0 .00 
58 22.5 19.6 +2.9 8.41 
66 24.0 21.0 +3.0 9.00 
66 22.1 21.2 +.9 .81 
75 22.0 23.0 -1.0 1.00 
76 24.0 23.0 +1.0 1.00 
81 25.0 24.2 •+.8 .66 
88 25.0 26.6 -.6 .34 
89 23.6 26.8 -2.3 6.29 
91 26.1 26.2 -1.1 1.21 

Total  

100 24.5 28.0 -3.5 12.25 

384.6 384.6 .0 92.44 
Average  19.23 19.23 4.62 

standard error= V4.62=2.15 

The formula involved is— 

ACxY-'^l- 
Sum* dxdy 

(Sum (Px) (Sum (Py) (VI) 

where AGxr is the alienation coefficient between X and Y and the 
other symbols are as before.    The values to be entered in this formual 
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have already been computed in Table 3, to which column 6 has been 
added for this pm'pose.    Using these values we have: 

-v ^C^DIa.. A,e = -t/ 1 - .oA?f¿^f?!.. = 0.380 Día.. Age    -y i    13490.1X643.46' 

This is approximately the same as the value found in the preceding 
paragraph (0.379). The small difference is due merely to failure to 
carry out the computations to enough significant figures. 

It is interesting to compare the alienation coefficient based on the 
regression straight line with the alienation index based on the curve 
of Figure 1, B. On theoretical grounds it is obvious that since the 
curve is the better estimating mechanism its alienation index shoidd 
be the lower. This is found to be true, its value being 0.172 as com- 
pared with that of 0.379 for the alienation coefficient. It may then 
be said that the curve is slightly over twice as effective as the line. 

For this reason, the correlation coefficient ((7(7), which is based on 
the straight line, will naturally be lower than the correlation index. 
Its value is 0.925, as compared with 0.985. Obviously the correla- 
tion values convey a less definite sense of the relative efficiency of 
line and curve than do the alienation values. It should be noted that 
the alienation coefficient (and the correlation coefficient associated 
therewith) is always a conservative estimate of the importance of one 
variable in determining values of another. 

It is customary to use a plus or minus sign before the correlation 
coefficient to indicate the direction of slope of the regression line. 
The plus sign implies a rising line, or in other words, that increases 
in one variable are associated with increases in the other, while a 
minus sign implies the reverse. If Formula VI is used, the sign of 
the term *^Sum dxdr^^ (before squaring), indicates the sign of the 
coefficient. It is not customary to attach a sign to the correlation 
index since it is both positive and negative when part of the curve 
rises and part falls. 

RELATIVE ADVANTAGES    AND    DISADVANTAGES    OF THE STATISTICAL    AND  THE 
GRAPmC METHODS 

Although the nongraphic methods, considered alone, are more 
laborious than simple curve drawing, they are actually less laborious 
if to the work of drawing the curves is added that of checking their 
adequacy. The statistical methods almost simultaneously produce 
both a predicting mechanism and a criterion of its effectiveness. 
Furthermore the result obtained is free from personal bias, and 
different workers using the same data will arrive at identical conclu- 
sions. On the other hand, the greater flexibility of the graphic 
method will permit greater accuracy in the vast majority of instances 
where only two variables are involved. But where three or more 
variables must be considered, the purely graphic method is less 
successful; its advantages of flexibility and accuracy are less marked, 
and its difficulties are intensified. It follows that a combination of 
the two is desirable in such cases. 
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GRAPHIC METHODS OF CHECKING CURVE FIT 

RESIDUAL CURVE 

Before passing on to a more detailed consideration of multiple linear 
correlation, certain processes will be described which have little or 
no practical utility in connection with 2-variable problems, but which 
are more readily explained in connection with them. These pre- 
liminary considerations will be of great service in facilitating the 
discussion of multiple correlation problems. 

In Table 1, column 8, have been listed the residuals of curve B. 
Where a point is above the curve a plus sign has been used, and where 
it is below the curve a minus. These residuals may be plotted as a 
dependent variable against the original independent variable, which 
in this case is age. The result is shown in Figure 4, A. It will be 
seen that althdilgh the plotted points of the original data defined a 
curve (Fig. 1, B), the plotted deviations from this curve define a 
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FIGURE 4.—The residual curves corresponding to Figure 1, B, and Figure 3. Correctly fitted curves 
should result in horizontal straight lines, signifying no correlation between residuals and inde- 
pendent variables 

horizontal straight line. (Fig. 4, A.) It shoidd be clear without 
detailed proof that this always results from correct curve fitting, and 
it follows that this graph of residuals may be used as a means of 
checking the correctness of any curve. Another way of stating the 
same thing is that the residuals should not be correlated with the 
independent variable. A test of this might equally well be made 
mathematically by the method outlined on page 10. If this were 
done, the evidence of perfect curve fitting would be an alienation 
coefficient of 1.00 and a regression equation which represented a 
horizontal Hne. Whue sound, neither of these tests is of sufficient 
value to justify the labor involved. 

As a case of poor curve fitting to compare with the above, Figure 3 
may be considered. The corresponding residuals are given in Table 4, 
column 4. If these are plotted Figure 4, B, results and a well defined 
curve appears. If this curve is drawn and values read from it are 
added to values read from Figure 3, the sums, when plotted, will 
produce the curve of Figure 1, B.    This illustrates an indirect method 
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of curve fitting in which the regression line is, as it were, used as a 
first approximation to the truth, and is afterward converted into the 
true curve by means of the residuals. In the present instance this 
method is of no value, producing no better results than the direct 
method, and considerably lengthening the work. In problems 
involving several variables, however, a slight modification of the 
principle involved will be of great utility. 

The alienation coefficient of the residuals in Figure 3 will be found 
to be 1, and their regression line wiU be horizontal in spite of the 
obviously poor fit. This indicates merely that the straight line of 
this figure is the best fitting straight line, a fact which does not pre- 
clude the possibility of improving on the straight line by adding 
curvature. This illustrates the limitations of this mathematical 
treatment. It will not distinguish at all between such cases as those 
illustrated in Figures 4, A and B. In fact it will show errors only in 
the tilt of the line or curve. 
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FiQUBB 5.—Curves showing comparison between measured and estimated values for correctly and 
incorrectly fitted curves. A is derived from Figure 1, B, and B from Figure 3. Correct curves 
result in 45 degree straight lines passing through the origin 

CURVE OF RELATION BETWEEN MEASURED AND ESTIMATED VALUES 

The second type of derived curve, similar in purpose and usefulness, 
is prepared by plotting measured against estimated values of the 
variable, using the same scale for each axis. If this be done for the 
same data as before, i. e., that of Figure 1, B, and Figure 3 (the values 
used being listed in columns 6 and 7, Table 1, and columns 2 and 3, 
Table 4), A and B of Figure 5 result. It will be seen that a correctly 
fitted curve by this treatment results in a 45-degree straight line 
radiating from the origin as in Figure 5, A. Any other Une, or a 
curve such as Figure 5, B, indicates erroneous fitting. The inter- 
pretation of various possibilities is as follows: 

A. A 45-degree line not radiating from the origin means that the fitted curve 
should be raised or lowered without changing its tilt or form. 

B. A straight line not 45° indicates that the tilt should be changed without 
changing the form. 

C. A curve indicates the desirability of a change in form. 

As in the previous case. Figure 5, B, may be used in conjunction 
with the straight line on which it is based (fig. 3) to produce the true 
curve.    The process of adjustment, however, differs and is illustrated 
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in Table 5. In this the column 1 values are arbitrarily selected. Column 
2 contains values read from Figure 3 (the straight line) corresponding 
to the column 1 values, while column 3 contains values read from 
the curve of Figure 5, B, corresponding to the column 2 values. The 
result is practically identical with the curve of Figure 1, B. 

TABLE 5.—Correction of regression line by means of Figure 5, J5, to produce curves 
similar to Figure 1 

Age 
Esti- 

mated 
diameter i 

Corre- 
sponding 
measured 
diameter ^ 

Age 
Esti- 

mated 
diameter i 

Corre- 
sponding 
measured 
diameter 2 

Age 
Esti- 

mated 
diameter 1 

Corre- 
sponding 
measured 
diameter* 

Years 
20  

Inches 
11.8 
13.9 
15.9 

Inches 
9.6 

14.3 
17.6 

Years 
60 - 

Inches 
17.9 
20.0 
22.0 

Inches 
20.0 
21.7 
23.1 

Years 
80  

Inches 
24.0 
26.1 
28.1 

Inches 
24.0 

30 60  90-. 24.7 
40            70  100  24.9 

I From Figure 3- Í From Figure 5, B. 

like the last process, this method of preparing curves indirectly 
by means of the regression straight line has no utility here, but 
slightly modified it also will be used with advantage in multiple- 
correlation problems. 

MULTIPLE REGRESSION EQUATION 

Where more than three variables are involved in a problem, a non- 
graphic method is available which is closely parallel to that already 
described for two variables. Since a form analogous to a straight 
Une is assumed, the equation employed remains in the first degree^ 
but must provide for additional independent variables. Its form is 
(for three variables) W=AX-\-BY-\-K; (for four variables) W=AX+ 
BY+CZ+K, etc., where W is the dependent variable, X, F, and Z 
are the independent variables, and Aj By C, and K are constants to be 
determined from the available data. 

The determining of these constants is best done by the method of 
least squares. It may be accompUshed through the use of the follow- 
ing procedure. 

It is first necessary to rewrite the equation in sUghtly different 
symbols. This revised form is quite closely analogous to that on 
page 10 for two variables, thus— 

W^Mw+Bj,^^(X^M,,) + Bj,y^{Y-'Mr)       (VII) 

where W is the dependent variable; Mw, Mx, and My are the mean 
values of W, X, and Y; SDw, SDx, and SDy are the standard devia- 
tions of W, X, and F; and Bwx and BWY a-re coefficients to be determ- 
ined. The means and standard deviations axe determind by the 
method already described (p. 6), but the determination of the 
coefficients^ Bwx) etc., requires the use of two or more ''normal 

• CCwz and CCxw are identical, but Bwx and Bxw are not.   The correct signs of the correlation coeflQ- 
eients must be used (see p. 13). 
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equations/' which are as follows, VIII-A serving for three variables, 
and VIII-B for four variables— 

ßjvx'^ GGXYBWY — CCwx 1 ryTTT-A ") 
CCYXBWX^ BWY= CCWY J 

■i^WX~^ (^(^XY^WY'^ CCxzBwZ^^'^^^C'WX 
CCrxBwX + BwY+ CCyzBwZ = CCwY (VIII-B) 
CCzx^wx^ CCZYJ^WY^ ijwz~(^(^wz 

etc., etc., each additional variable adding one equation and length- 
ening each equation by one term. By observing the sequence of 
terms it is easy to write the four equations for a problem with five 
variables, etc. 

To illustrate this method it is necessary to select a problem involv- 
ing more than two variables, such as that of the relation between bark 
thickness, d. b. h. (diameter breast high), and height of second- 
growth longleaf pine trees. A considerable number of data will be 
used (564 tree measurements) and it would be out of the question to 
list them. The computations of averages, standard deviations, and 
alienation coefficients involve no new principle. These values, there- 
fore, may be taken as a starting point.    They are: 

standard 
Mean deviation 

Bark thickness (TT) .     0.605 0. 185 
Diameter {X) ___.     7. 01 2. 67 
Height (7) - 54. 99 16. 7 
Alienation coefficients, bark and diameter {ACwx) 0. 893 
Alienation coefficients, bark and height {ACWY)     • 968 
Alienation coefficients, diameter and height (ACXY) --     • 524 

From these the following correlation coeflicients were calculated: 
Bark and diameter {CCwx)   +0. 450 
Bark and height {CCWY) -      +. 251 
Diameterand height (CCxr)      +. 852 

Substituting these values in the normal equations (VIII-A) we 
have— 

J5TFX + 0.852 ßTFy = 0.450 

0.852 5,^x + 5Trr = 0.251 

These equations must now be solved simultaneously to obtain the 
values of Bwx and BWY- For example, we may multiply the second 
by 0.852 and then subtract it from the first, thus— 

5^x +0.852 5^^.^=0.450 
0.726 5Trx4-0.852 5^^^ = 0.214 
0.214. Bwx =0.236 

Bwx =0.861 

Then, if this value of Bwx is substituted in the first equation, it 
becomes— 

0.861 + 0.852 5^r=  0.450 
0.852 BprF=-.411 

BwY=-AS2 
8553—.31 3 
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The values of the coefficients may now be substituted in Equation 
VII, as may also the given values for means and standard deviations. 
This will give— 

W=-0.605 + 0.861 ^^ (Z- 7.01) - 0.482 ^^ (Y- 54.99) 

= 0.0596Z-0.00534F+0.481 

which is the required multiple regression equation. 
The accuracy of this equation as a mechanism for predicting bark 

thickness can be measured, as in the cases previously illustrated, by 
computing estimated bark thickness for each of the 564 trees measured 
and then, by comparing estimated and measured values, calculating 
the standard error. From this in turn the multiple coefficient of 
alienation and the multiple coefficient of correlation can be derived. 
In the present instance the standard error is 0.158 inches. The mul- 
tiple alienation coefficient is then— 

SE   0.158_^^,, 

and the multiple correlation coefficient is— 

Vl-(0.854)2 = 0.520 

This method brings out best the principles involved, but time can 
be saved by calculating the ahenation coefficient directly and then 
working backwards to the other values needed. The equation which 
may be used is— 

-^CwiXYZ--) = V1 ■" \BwxGGwx + BWYCCWY + BwzCCwz + )   (IX) 

where ACWíXYZ^-) is the multiple alienation coefficient between W 
and X, Yj Z, etc.    In the present instance this becomes— 

ACwiXY) = Vl - [(0.861 X 0.450) + (- 0.482 X 0.251)] = 0.856 

The corresponding correlation coefficient is Vl~ (0.856)^ = 0.517. 
Since the standard deviation of the bark thickness is 0.185, the 
standard error may be obtained by means of Equation III— 

.^_SE 

0.856=^^ 0.185 

^£'=0.158 

It will be seen that the values are approximately the same as before 
but that the computation is simple and brief, an estimate of each 
individual bark thickness being unnecessary. The small difference in 
the alienation coefficient could be eliminated by retaining more sig- 
nificant figures. 

The alienation coefficient here is high.    Of the variation in bark 
thickness 85.6 per cent is associated with factors other than diameter 
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and height. As a predicting medium the regression equation obvi- 
ously leaves much to be desired. It is not clear, however, how much 
of this high value is due to other unevaluated variables and how much 
is the result of assuming that the equation is linear. It has been 
seen that the alienation index may be much lower than the ahena- 
tion coeflBcient where proper curves are used. This situation then 
emphasizes the need for improved methods of working with multiple 
curvilinear correlation, and it is such a new method that it is the 
primary purpose of this bulletin to present. 

The Unear regression equation shows that both height and diameter 
have some influence on bark thickness and permits an approximate 
appraisal of their relative importance. Moreover, this information 
can not readily be obtained by simple graphic methods. To illus- 
trate this, Figure 6 is presented to show the measurements involved 
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FIGURE 6.—Relation of bark thickness to height and bark thickness to diameter as brought out by 
2-variable graphs.   The correlation in each case is apparently positive.   Compare with Figure 7 

in this study plotted in the customary way over both diameter and 
height. While the points indicate some curvilinearity, in neither case 
can a straight line be considered a poor interpretation. One would 
conclude from examining these graphs that increases in height and 
diameter both are associated with an increase in bark thickness. 

However, the multiple regression equation (p. 18)— 

Bark thickness = 0.0596 diameter-0.00534 height + 0.481 

shows that while an increase in diameter is associated with an increase 
in bark, the larger the value used for height, the smaller the value 
which will result for bark thickness. This is an apparent contradic- 
tion to the conclusions drawn from Figure 6, B. To understand how 
these conclusions may be reconciled it is necessary to plot this equa- 
tion, as in Figure 7, which was prepared by substituting for diameter 
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the arbitrary values 2, 4, 6, etc., and then plotting the resulting series 
of straight lines. It will be seen that each individual line falls as the 
height increases, but that the series of lines viewed as a whole tends to 
rise. In other words, the net effect of increase in height, when diam- 
eter does not vary, is to decrease bark thickness; but when diameter is 
allowed to increase with height, as it normally does, the trees will have 
thicker bark, not because of their height but because of their diameter. 
Clearly both graphs represent the truth, but Figure 7 is a far more 
complete statement and is, in addition, a better means of predicting 
bark thickness. This same information can be obtained directly 
•from the regression equation without plotting the graph. The plus 
sign before the coefficient of diameter ( + 0.0596) means that the net 
effect of diameter, i. e., the effect of diameter when height is constant, 
is to increase bark thickness, while the minus sign before the coefficient 
of height ( — 0.00534), means that the net effect of height is to decrease 
bark thickness. Furthermore, since the coefficient of diameter is 
the larger, diameter is a more important factor than height. In 
comparing the coefficients in such cases, however, the range of values 
of the variables must be borne in mind.    If diameter, for example, 
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FIGURE 7.—Relation of bark thickness to height and diameter as brought out by the multiple 
regression equation Qinear). Correlation between bark thickness and height is now seen to be 
negative.   Compare with Figure 6 

ranges from 2 to 16 inches, the effect of diameter will cause bark thick- 
ness to vary from 0.0596X2 = 0.12 to 0.0596 X 16 = 0.95, a difference 
of 0.83 inch. On the other hand, if height ranges from 20 to 100 feet, 
its effect will range from 0.00534X20 = 0.11 to 0.00534X100=0.53, 
a difference of 0.42 inch. The maximum difference due to diameter 
is, therefore, only about twice as great as that due to height. 

Another even better method of analyzing these relations is to 
compare the alienation coefficients and standard errors of the three 
regression equations which are based on height alone, on diameter 
alone, and on both. On pages 17 and 18 the corresponding alienation 
coefficients have been given; from these, standard errors may be 
computed in the usual way, as, for example: 
Variables                                                                                          Alienation coefficient Standard error 

Bark and height 0. 968 0. 179 
Bark and diameter      .893 .165 
Bark, diameter, and height     . 856 . 158 

It will be seen that while all these alienation coefficients and 
standard errors are high the use of diameter alone reduces them 
considerably below what is obtainable by the use of height alone, and 
the use of both factors is marked by a still further improvement of 
slightly less magnitude.    The standard error is improved by a reduc- 
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tion of 0.014 inch through using diameter instead of height, and an 
additional 0.007 by using both. Information of this sort should make 
possible an intelligent decision in any given problem as to what 
factors should be used, or whether a further search, either for addi- 
tional variables or for curvihnearity in the relations may be desirable* 

CURVILINEAR MULTIPLE CORRELATION 

It should by now be obvious that a method of handUng curviUnear 
multiple correlation is needed in many cases. As has already been 
said, where no. more than three variables are involved, harmonized 
curves drawn by the conventional method long employed by foresters 
offer a solution. In the case just described, for example, much the 
same conclusions might have been reached by this method. In 
practice, however, this method is far from satisfactory because, 
(1) a very large number of data are required for satisfactory curves, 
and, (2) it is next to impossible to keep track adequately of weights 

FIGURE 8.—Various types of correlation surfaces. A is a surface of the type assumed in ordinary 
liiiear multiple correlation. The equation is of the type Z=AX-\-BY-\-C. B is a correlation 
surface where the regression equation is of the type Z=/i(X)+/2(Y)+C'. C is a surface where 
the regression equation is of the type /o(Z) =fi(X)-Ç-f2(Y)+C 

during the construction of the second and subsequent sets of curves. 
As a result, in actual practice this method is becoming discredited 
even for 3-variable problems. As has already been stated, it is 
unusable for problems involving four or more variables. 

Clearly then, a mathematical method is needed. The chief 
difficulty is that the type of equation involved is usually unknown. 
In instances where it may be predicted, the least-squares method is 
available; but this is rarely the case in forestry problems. 

Figure 8 illustrates three geometrically different types of relation- 
ship where three variables are involved. Just as a 2-variable equa- 
tion may be considered as geometrically equivalent to a line, so a 
3-variable equation may be considered as geometrically equivalent to 
a surface. If a 2-variable equation of the first degree may be repre- 
sented by a straight line, a 3-variable equation of the first degree 
may be represented by a plane surface. Figure 8, A represents such 
a surface. The independent variables are assigned values on the 
two horizontal axes, and the dependent variable is measured verti- 
cally.    Its equation is— 

Z=AX+BY+C 
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Figures 8, B and C, represent two cases of nonlinear equations. 
Figure 8, B, represents an equation of the form— 

z=MX)+MY)+c 
where/i( ) and/2( ) signify ''any function of/' 

The substitution, in such an equation, of a series of values for X 
(or Y), is equivalent to intersecting the surface by a series of parallel 
vertical planes. The lines of intersection in Figure 8, A, are Jc, 
6'c', etc., and these are analogous to the harmonized curves of the 
conventional graphic method. It is obvious, therefore, that in the 
present instance these harmonized curves are a series of parallel 
straight hues, and this is true whether the intersecting planes be 
parallelto thé X or to the Y axis. In Figure 8, B, however, the 
resulting harmonized curves are nonlinear but still *' parallel.'^ The 
curve systems with which foresters are accustomed to deal are seldom 
of this type, and it, therefore, follows that a more flexible type of 
equation must be used.    If it is assumed, however, that— 

the geometrical analogy may appear like Figure 8, C, and in this the 
harmonized curves are no longer necessarily parallel, because of the 
functional character of the dependent variable. 

The appropriate method for such cases can perhaps best be 
explained by a concrete example. To permit a comparison of the 
relations empirically obtained with the true relations a hypothetical 
case will be set up by means of the assumed equation— 

(fy=v:f+ioiogF 
It will be seen that this has been so chosen as to conform to the more 
general type just defined. Table 6 shows 30 sets of observations, the 
values of X and Y being selected at random, and the corresponding 
value of Z being calculated (to the nearest unit) by means of this 
equation. (These calculated values are to be considered equivalent 
to the measured values of an actual problem based on field data.) 
The problem is to find the essential equivalent of this equation by 
means of these 30 sets of values. With so few data it would be 
futile to attempt it by the conventional graphic method of harmonized 
curves. The method of attack will be, first, to determine the multiple 
regression equation and then later, by a series of successive approxi- 
mations based on an analysis of the residuals, to modify the graphic 
equivalent of the equation by introducing whatever curvilinearity is 
present.    The procedure will be described step by step. 



TABLE 6.- -Data of example based on equatioUy \~T) ^-XIX-\-10 logYy and successive estimates of Z obtained by the multiple curvilinear correlation 
^•^-^      ^ method 

Calcu- 
Assumed values lated Estimated values of Z, from alinement charts Residuals 

values 

First Second Third Fourth Fifth Sixth Seventh Eighth First Second Third Fourth Fifth Sixth Seventh esti- 
mate Eighth 

X Y Z esti- 
mate 

esti- 
mate 

esti- 
mate 

esti- 
mate 

esti- 
mate 

esti- 
mate 

esti- 
mate 

esti- 
mate 

esti- 
mate 

esti- 
mate 

esti- 
mate 

esti- 
mate 

est- 
mate 

esti- 
mate 

esti- 
A I     B mate 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) 

11 10 15 13.8 16.0 15.0 14.6 14.6 14.6 14.6 14.6 +1.2 0.0 +0.0 +0.4 +0.4 +0.4 +0.4 +0.6 +0.4 
20 5 14 12.5 12.8 13.0 13.6 13.7 13.7 13.7 13.8 +1.5 +1.2 +1.0 +.4 +.3 +.3 +.3 +.4 +.2 
2 15 15 15.0 14.3 14.4 14.6 14.6 14.7 14.7 14.6 .0 +.7 +.6 +.4 +.3 +.3 +.3 +.5 +.4 

19 1 8 11.0 8.3 8.0 8,7 8.4 8.0 7.9 7.9 -3.0 -.3 .0 -.7 -.4 .0 +.1 .0 +.1 
1 20 15 16.8 14.3 14.4 15.0 14.9 16.1 15.1 15.1 -1.8 +.7 +.6 .0 +.1 -.1 -.1 -.2 -.1 
1 10 13 13.2 13.0 13.2 13.1 13.3 13.3 13.3 13.1 -.2 .0 -.2 -.1 -.3 -.3 -.3 -.4 —.1 

18 8 15 13.5 14.2 14.3 14.5 14.6 14.5 14.5 14.6 +1.5 +.8 +.7 +.5 +.5 +.5 +.5 +.8 +.4 
17 1 13 12.0 12.4 12.6 12.6 12.9 13.0 13.0 13.0 +1.0 +.6 +.4 +.4 +.1 .0 .0 .0 .0 
2 6 12 11.7 12.2 12.3 12.3 12.6 12.5 12.5 12.3 +.3 -.2 -.3 -.3 -.6 -.5 -.6 -.6 -.3 
5 9 14 13.0 14.1 14.2 13.8 13.8 13.9 13.9 13.8 +1.0 -.1 -.2 +.2 +.2 +.1 +.1 +.2 +.2 

13 13 16 16.0 16.6 15.4 15.3 15.2 15.3 15.3 15.3 .0 -.6 -.4 -.3 -.2 -.3 -.3 -.6 -.3 
8 19 16 16.9 16.0 15.7 15.8 15.6 16.8 15.8 15.9 -.9 .0 +.3 +.2 +.4 +.2 +.2 +.4 +.1 
8 12 15 14.4 15.3 15.2 14.7 14.7 14.7 14.7 14.8 +.6 -.3 -.2 +.3 +.3 +.3 +.3 +.5 +.2 

15 4 13 11.8 12.5 12.7 12.6 12.8 12.8 12.8 12.9 +1.2 +.5 +.3 +.5 +.2 +.2 +.2 +.2 +.1 3 8 13 12.6 13.3 13.4 13.2 13.4 13.3 13.3 13.2 +.5 -.3 -.4 -.2 -.4 -.3 -.3 -.4 -.2 
4 2 9 10.4 9.6 9.6 9.0 8.8 9.2 9.1 8.6 -1.4 -.6 -.6 .0 +.2 -.2 -.1 -.1 +.4 

17 17 16 16.7 15.9 15.6 16.0 15.8 16.0 16.0 16.2 -.7 +.1 +.4 .0 +.2 .0 .0 .0 -.2 
10 9 14 13.4 14.7 14.7 14.3 14.3 14.3 14.3 14.3 +.6 -.7 -.7 -.3 -.3 -.3 -.3 -.6 -.3 

5 13 16 14.5 14.9 14.9 14.6 14.6 14.7 14.7 14.7 +.5 +.1 +.1 +.4 +.4 +.3 +.3 +.5 +.3 
10 6 13 12.3 13.7 13.9 13.4 13.5 13.4 13.4 13.4 +.7 -.7 -.9 -.4 -.5 -.4 -.4 -.6 -.4 
20 1 8 11.0 8.2 7.9 8.8 8.6 8.0 7.9 8.2 -3.0 -.2 +.1 -.8 -.5 .0 +.1 .0 -.2 

1 14 14 14.6 13.7 13.8 14.0 14.1 14.2 14.2 14.1 -.6 +.3 +.2 .0 -.1 -.2 -.2 -.3 -.1 
2 17 16 16.8 14.5 14.6 15.0 14.9 16.0 15.0 15.0 -.8 +.6 +.4 .0 +.1 .0 .0 .0 .0 
8 10 14 13.6 14.8 14.8 14.4 14.3 14.4 14.4 14.3 +.4 -.8 -.8 -.4 -.3 -.4 -.4 -.6 -.3 

12 8 14 13.1 14.6 14.5 14.2 14.2 14.2 14.2 14.2 +.9 -.6 -.5 -.2 -.2 -.2 -.2 -.3 -.2 
6 6 13 12.0 13.3 13.5 13.0 13.2 13.1 13.1 12.9 +1.0 -.3 -.5 .0 -.2 -.1 -.1 -.2 +.1 3 12 14 14.0 14.2 14.3 14.2 14.2 14.3 14.3 14.2 .0 -.2 -.3 -.2 -.2 -.3 -.3 -.5 -.2 

16 2 11 11.2 10.3 10.4 10.3 10.6 11.0 10.9 10.9 -.2 +.7 +.6 +.7 +.5 .0 +.1 +.1 +.1 10 2 10 10.7 10.3 10.5 9.8 9.9 10.4 10.3 00.1 -.7 -.3 -.5 +.2 +.1 -.4 -.3 -.2 —.1 
4 14 15 14.9 14.8 14.8 14.7 14.7 14.7 14.7 14.7 +.1 +.2 +.2 +.3 +.3 +.3 +.3 +.5 +.3 

Total.- 401 401.3 400.6 401.5 400.0 400.6 402.1 401.6 400.7 26.3 12.4 12.3 8.8 8.9 6.9 7.0 .63 
Alienation " coefficient 

or index.. .633 .233 .224 .168 .164 .131 .126 .112 
Correlation côëfflcï«Qt' "" 

or index.. .846 .972 .976 .986 .988 .991 .992 .994 
■Asmara 

Standard d Bviatlon  
Tor  

"'%ll' 
Standard ei   —..„.. 

""'W """.'48" ""."36" "'"."33" '"""."28" """."27'  ."24 

o 



24 TECHNICAL  BULLETIN  210, U. S. DEFT.. OF AGRICCJLTURE 

THE CORRELATION ALINEMENT CHART ILLUSTRATED BY AN 
EXAMPLE 

Step 1.—The first step is the determination of the multiple regres- 
sion equation by the method already described. This has been done 
and found to be— 

Z= 0.0635X+ 0.3684r+ 9.392 

The multiple ahenation coefl&cient is 0.54.    The corresponding plane 
surface is illustrated in Figure 9. 

FIGURE 9.—The plane of the Ikiear regression equation (the first approximation) and the curved 
surface representing the second approximation for the material in Table 6 

Step 2.—The second step involves the calculation of estimated 
values of Z by means of this equation, a decidedly tedious process 
were there several hundred observations instead of 30. Up to this 
point in this discussion short-cut methods have not been described, 
since to do so would merely confuse the reader. In the present in- 
stance, however, the use of a time-saving mechanism, the alinement 
chart, is so intimately associated with the whole procedure that it 
will be necessary to describe it. An example of an alinement chart 
which permits rapid computation by the regression equation just 
given is shown in Figure 10. Its properties are such that any straight 
line which cuts the three axes will intersect them at values which 
satisfy this equation.    It therefore follows that if values of X and 
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Y are given, a straight line connecting them will intersect the Z 
axis at the required value. How such charts may be constructed 
will be described in later pages. For the present it will be assumed 
that the required chart is at hand. It is used to determine esti- 
mated values of Z, which are entered in the fourth column of Table 6. 

Step 3.—The residuals, or differences between each original (meas- 
ured) value of Z and the corresponding estimated value obtained 
in step 2 are next computed. These are entered in column 12 of 
Table 6. 
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FiQXJRE 10.—Alinement chart for the equation (first approximation) Z«0.063öX+0.3684y+9.392. 
A straightedge, or straight line on a cellnloid strip, Idd aCTOSs the dbart in such a manner as to 
intersect the X and Faxes at any given values of these variables will mtersect the Z axis at the 
same value as would be obtakied by means of the equation 

As a preparatory step for the use of these residuals, the multiple 
regression equation is next converted into two net regression equa- 
tions by substituting in it first the mean value for Y and then the 
mean value for X.    These substitutions give— 

Z=0.0635Z+12.79 

Z=0.3684r+9.97 

Lines corresponding to these two equations are then drawn, the 
straight hues of Figure 11. The residuals are next plotted about 
the net regression hne for X, their horizontal position being deter- 
mined by the corresponding X values and their vertical positions 
being measured, not from the horizontal axis, but from the regres- 

8553—31 4 
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STRAIGHT LINES—REGRESSION   LINES FOR  FIRST   ESTIMATE 

CURVED   LINES-REGRESSION   LINES FOR SECOND ESTIMATE 

FioxTBE 11.—The regression straight lines and first approximate regression curves 
for the data in Table 6.   The straight lines fit the data poorly 
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sion line, above or below, according to their signs. (Class averages 
rather than individual values are shown in fig. 11.) The same pro- 
cess is then repeated for the net regression hne for F. Free-hand 
curves are then fitted to each series of points without difficulty. In 
both cases there are decided indications of curvature. 

This process is analogous to that outhned on page 14 and illus- 
trated in Figure 4, except that the residuals are plotted about the 
regression line instead of about a zero horizontal axis. Had the 
regression equation been an adequate expression of the data, there 
would have been no correlation between the residuals and either of 
the independent variables. The points plotted by means of the 
residuals (as in fig. 11) would then define the regression lines. That 
this is not the case in the present instance is evidence of the existence 
of curviUnearity. 

Step 4'—These curves are next used to calculate the second esti- 
mated values of Z (column. 5, Table 6). This may be done by read- 
justing the graduations of the X and Y axes of the alinement chart 
to make them agree with these curves instead of the straight fines 
from the regression equations. For example, in the lower part of 
Figure 11 it will be seen that the value from the curve colresponding 
to F=20 is the same as that from the regression straight line for 
F= 15.5. The revised 20 graduation is, therefore, placed where the 
15.5 graduation was originally located. In a similar way 19 is placed 
where 15.3 was originally, etc., etc. When both X and Y scales of 
the afinement chart are thus completely revised (fig. 12), the second 
estimated values for Z may be read from it directly. 

Although the second estimate residuals are not used, they are 
entered in column 13 for the purpose of comparison. 

Figure 9 shows how the plane of the regression equation has in 
effect been modified by this treatment. The curved surface is of 
the type shown in Figure 8, B. 

Step 5.—It is at this point that the possibility of a functional 
relationship between Z and/i (X) + /2 (F) may be investigated. In 
correcting the alinement chart, variably spaced graduations have been 
substituted for those of uniform interval on the X and F scales. The 
possibility of an improvement through a similar transformation of 
the Z scale is obvious. Such a transformation may be readily 
accomplished as follows : 

For convenience, the measured and second estimate values of Z 
are first sorted into classes, the sorting basis being the second esti- 
mates, as illustrated in Table 7. 

TABLE 7.—Example of sorting of second estimate and measured values on basis of 
second estimates, in step 5 

Num- 
ber of 
items 

Average value of Z 

Second-estimate class 
Num- 
ber of 
items 

Average value of Z 

Second-estimate class 
Second 

estimate 
Meas- 
ured 

Second 
estimate 

Meas- 
ured 

8.0 to 8.9 __ _ 2 
♦   1 

2 
0 
4 

8.25 
9.5 

10.3 

8.0 
9.0 

10.5 

13.0 to 13.9 --  5 
11 

4 
1 

13.4 
14.5 
15.4 
16.0 

13.2 
9.0 to 9.9 14.0 to 14.9   14.5 
10.0 to 10.9          -__     . 15.0 to 15.9  15.2 
11.0 to 11.9   16.0tol6.9   16.0 
12.0 to 12.9  12.5 13.0 



28   TECHNICAL BULLETIN 210, U. S. DEPT. OF AGRICULTURE 

The desired correction is to place the 8.0 graduation where the 
8.25 graduation (which is not actually marked) now is, and so on. 
The various corrections indicated must be harmonized, however, 
and this is accomplished by plotting the average measured values of 
this table over the average second estimates and fitting a curve to 
them. (Fig. 13.) By means of this curve the Z axis may be regrad- 
uated. For example, reading the curve backwards, the revised 8.0 
graduation is placed where the original 8.3 graduation was located. 

Z 
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9- 

— 15 
- 16 

Ô- — 17 

— IÖ 
7- 

—  19 

A — - 20 

5- 

3- 

-18 

Y 

.20 
- IS 
- 16 
- 14- 
- 12 
- 10 
- 9 
- 8 
- 7 

|—   6 

-  4 

'1 
FIGURE 12.—Alinement chart for the second estimation of values of Zfrom values of Xand F. 

This is derived from Figure 10 by means of the curves of Figure 11. The folding back of the 
graduations of Xis the result of the rising and falling curve for that variable in Figure 11 

In the present instance, the curvature, though well-defined, is slight, 
and hence may be accidental. It would not be at all surprising to 
see it eliminated in later stages. As will be seen, however, it becomes 
more and more accentuated. 

With the Z axis of the alinement chart regraduated to correspond 
to this curve, the third estimates of Z are obtained.^^ (Column 6, 
Tablee.) 

10 If preferred, these third estimates may be read directly from Figure 13 (the curved value of measured 
Z corresponding to the second estimate becomes the third estimate), but the alinement chart must be 
revised in any event for use in subsequent steps. 
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This step will be recognized as similar to that described on page 15 
and illustrated in Figure 5. Had no correction been required, the 
points of Figure 13 would have defined the 45-degree straight line 
passing through the origin. Had they defined a straight line not 
passing through the origin, this would have indicated slight errors 
in fitting the curves of Figure 11. 

Step 6.—The next process is a repetition of the third and fourth 
steps and is illustrated by Figure 14 and columns 14, 7, and 15 of 
Table 6. The residuals of this estimate are plotted about the curves 
of Figure 11 instead of about the regression straight lines. It will 
be seen that in both portions of Figure 14, the curvature has been 
reduced.    In regraduating the axes of the alinement chart to córre- 
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6 10        \Z        14-       16 
z (SECOND ESTIMATE) 

IÔ 20 22       2-4, 

FIGURE 13.—The average measured values of Table 7, plotted over the average seoond-estimate 
values. The curve fitted is used for revising the Z axis of Figure 12. It can also be used for 
reading a third estimate from the second-estimate values 

spond to the revised curves, it is somewhat easier to refer the new 
graduations to the uniformly spaced graduations of Figure 10, and 
for this reason the original regression lines (dotted) are entered in 
Figure 14. 

SUp 7.—The next step is a repetition of the fifth and is illustrated 
by Figure 15 and column 8 of Table 6. The curvature suggested by 
Figure 13 is here more strongly defined. 

Subsequent steps.—In a similar manner those two types of successive 
approximations may be alternately appHed until it is is seen that no 
further improvement is being made. The final graph of the type of 
Figures 13 and 15 should, of course, be approximately a 45-degree 
straight line, and this is illustrated in Figure 16. 

Final step.—In some cases, particularly where the independent 
variables are closely correlated with each other, the successive curves 
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 REGRESSION LINES FOR SECOND ESTIMATE 
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FIGURE 14.—The residuals of the third estimate, column 14, Table 6 
(plotted about the second-regression lines), to which the regression 
lines for the fourth estimate are fitted. The curvature is less in 
each case. This is not uncommon where the two lines curve in 
the same direction 
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FiotTBE 16.—The final measured-estiihated Z curve, a well-defined 45-degree straight line showing 
that little further improvement can be made 
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may be found to swing back and forth instead of settling down into 
well-defined and stable positions. In such cases the final correction 
may be made by calculating a multiple regression equation between 
the last residuals and the independent variables, such as— 

e = AX-hBY+C 

where e is the residual of the last estimate. 
Had the previous steps been so completely successful that further 

corrections were impossible, this would be evidenced by zero values 
for A, Bj and (7. If they were not equal to zero it would be clear that 
the part of the residuals which is associated with X and Y may be 
eliminated by appropriate corrections, and the estimates further 
improved thereby. 

Although there is no evidence in the curves that such a correction 
is desirable in the present instance, it is interesting to perform it, if 
only to illustrate the method. If a regression equation be computed 
from the values of column 18A and columns 1 and 2, the following 
results— 

e = 0.0227X+0.0185F-0.396. 

The alienation coefficient is 0.884. Obviously, the small correc- 
tions implied by this equation are insignificant. An accurate appraisal 
of their importance can best be made by a calculation of the following 
type. The alienation index obtained by the seventh estimate is 
0.126. The aUenation index resulting from applying this correction 
will be the product 0.126X0.884 = 0.111. It is hard to conceive any 
practical case in which an improvement of this magnitude, 0.126 to 
0.111, would justify the labor of making it, but in the present instance 
it will be carried out in order to illustrate the method. 

The correction equation can readily be expressed by an alinement 
chart, but unfortunately it can not be used to correct the existing 
chart except in cases where the dependent variable has not taken on 
a functional form. This would be awkward, since an additional chart 
would be needed for the final correction. The difficulty of combining 
two such charts comes from the fact that the correction equation is 
of the form 

ez = AX+BY+C 

and this can not be added to 

UZ)=MX)-hMY) 

so as to yield, an equation of similar form. It would, however, be 
possible to add a correction equation of the type 

ef^^z)-AX+BY+0 

or th is would result in 

[corrected /o(Z)] = [/o(Z) + ef,,z,] = [/i (X) +AX] + [MY) + BY] + O. 

Interpreted graphically this difficulty is associated with the diverg- 
ence and convergence of the graduations of the Z axis of the ahne- 
ment chart, in terms of which the residuals are expressed. 
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To express the residuals in terms of/o(Z) all that is necessary is 
to add to this axis a convenient auxiliary scale with uniform spacing.^* 
The multiple regression equation between these residuals and the 
independent variable is computed and substituted for that just 
described. 

Figure 17 shows the alinement chart by means of which the 
seventh approximations are computed, with this auxiliary scale added 
to the Z axis. The residuals computed thereby are given in Table 
6 in column 18, B. The multiple regression equation between these 
and the independent variables is 

^/o(^) = 0-0272 Z+ 0.0255 F- 0.508 

The coefficient of alienation is 0.925, which differs but little from 
that already obtained (0.884) for the equation for e^. Modification 
of the alinement chart for the seventh estimate to provide for this 
correction involves raising the graduations of the X axis sufficiently 
to increase the final readings by 0.0272 X, raising those of the Y 
axis sufficiently to increase the final readings by 0.0255 F, and finally 
raising those of the Z axis by a uniform 0.508 so that the final read- 
ings will be reduced by this constant. To produce this result ^^ the X 
graduations must be raised— 

185 Z 0.0272 xfdi^tance between X and Y axes\ ^ ^ ^^^^ X^f^Vo. 
Vdistance between Z and Y axes/ \l-0/ 

the result thus calculated being in terms of the auxiliary units added 
to the Z axis.    In a similar way the Y graduations must be raised— 

0.0255 r(f tance between X and Y axesN ^ ^ ^^^^ Y(^^\ ^ 0.0299 F. 
\distance between Z and X axes/ \5.8/ 

Moreover, instead of raising the Z axis, it is somewhat easier to drop 
both the other axes the same amount, thus making the correction 
equations: 

6/Q(Z) = 0.185 JÍ-0.508 

and e/Q(z) = 0.0299 F-0.508 

The shifted graduations are shown in Figure 17, and the final esti- 
mates and their residuals are given in Table 6, columns 11 and 19. 

This type of final correction is not as laborious as might appear at 
first sight. The intercorrelations between the independent variables 
have previously been calculated in connection with the first step, 
which materially shortens the labor involved. In most cases the 
ahenation coefficient of the resulting regression equation will indicate 
that the application of the correction is not justified. 

The progressive improvements which result from the successive 
approximations are indicated by the values of the standard deviation 
and standard errors and of the alienation and correlation indices 

11 The absolute distance between the measured and last estimated values on the Z axis is measured by 
this auxiliary scale, or, more simply, the difference is computed between the auxiliary scale values opposite 
each measured value and its corresponding last estimate. These are the residuals expressed in terms o; 
the arbitrary scale. 

12 See page 50 for a more complete discussion of this correction. 

8553—31 5 
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computed therefrom, entered at the bottom of Table 6. It will be 
seen that the final standard error and the final alienation index are 
exceedingly low, particularly when it is remembered that in setting 
up the measured values the calculations were carried out but to the 
nearest unit. 
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FIGURE 17.—Final aíinement chart used for computing the seventh and eighth estimates, showing 
an auxiliary scale used for measuring the seventh residuals in terms of /o (-Z) for use in the final 
correction 

The sums of columns 4 to 11, inclusive, constitute a valuable check 
on the accuracy of the work as it progresses. Each sum should 
equal the sum of column 3. Minor differences, such as appear in 
the present example, may be attributed to slight inaccuracies in 
curve fitting or the like, but any discrepancies too great to be ex- 
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plained in such ways indicate some serious error either in computa- 
tions or in graphic work. It should also be noted that the difference 
between each sum and that of column 3 should equal the algebraic 
sum of the corresponding column of residuals. It is, therefore, worth 
while to add, algebraically, columns 12, 13, 14, 15, and 16, etc., to 
permit this additional check. 

It remains to be seen whether the curvilinear functional relation- 
ships which have been empirically determined are those of the assumed 
equation used in setting up the problem. Figure 18. shows in iso- 
metric projection both the surface of the original equation and that 
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FiGUBE 18.—-The close agreement between the equation from which data were computed and 

the estimates from the final chart is shown by the surfaces representing them. Solid lines 
represent the equation 

of the final alinement chart.   The correspondence is as nearly perfect 
as could be expected with the limited data used. 

Certain minor modifications of the general plan herein outlined 
suggest themselves. For example, it might in some instances be 
preferable to reverse the order of applying the two different graphic 
processes. This would be particularly useful in cases where the 
dependent variable has a curvilinear functional form as, for example, 
where the basic equation is such as— 

Y 

Here a correct result would obviously be approached far more rapidly 
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were the functional relations of Z tested first. Unfortunately it will 
probably be but rarely that sufficient advance knowledge is at hand 
to permit an assured determination of which order will be best. 

It should be noted that equations involving a multiplication of 
functions such as— 

Z=/x(Z)/. (F) 

can be handled by the use of logarithms through conversion into— 

log Z=log/i(X) +log/2(F) 

In a similar manner— 

Z=/i (Z)/2<^> 

can be converted first into— 

log Z=/2 (F) log/i (Z) 

and then into— 

log log Z=log/2 (F) +,log log/i {X), 

With other methods, lack of advance knowledge as to the form of 
the equation involved usually prevents taking full advantage of 
this fact. It is always possible, of course, to try the effect on the 
alienation index of the logarithmic treatment, but the amount of 
labor involved is excessive. It will be noted, however, that in the 
converted forms the preceding equations are of the type assumed 
by the present technic. Since this technic permits a functional 
form of Z as well as of X and F, the preliminary conversion into 
logarithms or log logarithms is not necessary. It therefore follows 
that such equations can be handled without special treatment, and 
without preliminary knowledge that they are being encountered. 

It should be emphasized, however, that wherever a preliminary 
analysis of a problem indicates that the logarithmic conversion is 
suitable, there will be a material economy of time and labor if it be 
performed. If not, the technic which has been described will ulti- 
mately arrive at the same result, but more slowly. The fact that all 
the functions are logarithmic has a tendency to make convergence 
towards the true curves abnormally gradual. Cases of this type 
have been encountered where 17 approximations have been necessary. 

Problems involving more than three variables, although somewhat 
more tedious, present no new complexities. Alinement charts may 
readily be constructed for four or more variables, and the successive 
steps are the same as those already described. 

In later pages several illustrative cases will be presented in which 
forestry problems will be worked out. In connection with each of 
these one or more variations in technic will be described which have 
not previously been mentioned. Before taking up these actual 
examples, however, it will be necessary to digress and explain more 
completely how the alinement charts needed mav be prepared. 
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CONSTRUCTION OF THE ALINEMENT CHARTS NEEDED 

This discussion will be restricted to the design of that type of aline- 
ment chart needed to express multiple regression equations. It is 
unnecessary to explain the underlying principle ^^ or to discuss other 
types, but it is desirable to present two methods appUcable to mul- 
tiple correlation problems. 

The chart is best made on ordinary cross-section paper, for this 
gives an easy basis for the drawing of as many parallel axes as may 
be needed, in any desired positiou and already graduated at uniform 
intervals. 

The simplest type of multiple regression equation is 
Z=AX-{-BY+G 

In this case the two edges of the graph may be adopted as the initial 
or X and Y axes. It is usually convenient to disregard temporarily 
the values ^ and 5, and arbitrarily to use any convenient scale for 
graduating these two axes. The only precaution necessary is that a 
suflBicient range of values be entered on each, and that they shall not 
be too crowded together. It is wise also to leave some space at both 
the upper and lower end to take care of possible shiftings and expan- 
sions which may become necessary in subsequent stages of the work. 

From the form of the equation it is known that the Z or Sum axis 
wiU be a straight line located somewhere between the other axes and 
parallel to them, and that its graduations will be uniform. A con- 
venient method of determining, by intersection, its position and the 
size of the graduating interval, is illustrated by the following example. 
Let us assume that the equation in question is 

Z=0.5X+0.7F+4 

and that we have graduated the outer axes as illustrated in Figure 
19. The next step is to find two pairs of values for X and Y yielding 
identical values of Z; foç example, if Z equals 10, this equation 
becomes— 

10 = 0.5X+0.7r+4 
or, 

0.5X+0.7F=6 
Now if 

X=0, then— 

and if 
Z=10— 

Two straight lines, one connecting the point X=0 with the point 
F=8.57 and the other connecting the point -X'=10 with the point 
F=1.43, must both cut the Z axis at the 10 graduation. They are 
drawn as indicated by the broken unes AB and CD in Figure 19. 
Their point of intersection must fall on the Z axis, which may, there- 
fore, be drawn through this point parallel to the other axes. 

" For a more complete discussion, see Lipka (H, ch. S to 6) or Peddle (S6). 
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In a similar way, it may be assumed that Z=5.    The equation 
now becomes— 

5 = 0.5X+0.7F+4, 
or, 

Now, if 
0.5X+0.7r=l 

X^ 0, then— 

and if 

F= —=-2 14 
^    0.7 

The corresponding lines are drawn; these are AD and EF. The fact 
that their intersection Ues on the axis attests the correctness of its 
position.    Furthermore, the distance between the two intersection 
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formula Z=0.5X-K).7y4-4 
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points must obviously represent 10 — 5, or 5 units on the new scale. 
One-fifth of this distance may then be determined and used to locate 
the remaining graduations. 

Where the coefficient of X is much larger than the coefficient of 
F, the Z axis will fall very close to the X axis. If this is the case it 
is somewhat more desirable to use a smaller scale in graduating the 
F axis than is used for the X axis, as this will shift the Z axis toward 
a more central and hence a more convenient location. 

A slightly different situation presents itself where one of the regres- 
sion coefficients is negative; as, for example, in an equation such as— 

Z=0.5X-0,7F+4. 

This can be handled by the simple expedient of graduating F in the 
opposite direction from X, i. e., from top to bottom, and if this is 
done, the intermediate or Sum axis falls in the same position {and 
has the same graduating unit) as it would were both coefficients 
positive. There is some danger of erroneous readings where this is 
done, however, and a preferable plan is to so transpose the terms of 
the equation as to eliminate the minus sign of the variable F. For 
example, the equation can be written— 

0.5X=Z+0.7F-4. 

The construction now proceeds as before, except that the X axis 
instead of the Z will now be in the central position. 

Where both coefficients are negative as, for example, in the equa- 
tion— 

Z=-0.5JSr-0.7F+4 

such a transformation is impracticable, and both X and F axes 
must be graduated in a direction opposite to that used for the Z axis. 

The ahnement chart for four or more variables appears more com- 
phcated, but no new principle is involved.    Take, for an example 

T7= 0.5JÏ+0.7F+0.6Z+2. 

The method is to split this equation into two parts by assimiing— 

Ä-0.5Jir+0.7F „..._-_-(A) 
whence—- 

TF=S+0.6Z+2__^._.^..-.--. —.-(B) 

An alinement chart for (A) is prepared as before. In Figure 20 this 
is represented by the axes X, F;"and S, Using this S axis as a starting 
point, a second chart is now prepared and superposed on the first, 
the Z axis being arbitrarily located, and the position and graduating 
interval of the W axis being determined by intersections based on 
equation (B). 

In using this chart a straightedge is first laid across the values for 
X and F to determine the value of S. It is then shifted to connect 
this value of S with that given for Z, and the required answer is then 
read from the W axis. The process is illustrated by the dotted Unes 
of Figure 20 by means of which the W value 8.3 is obtained when 
Z=2, F=5, andZ=3. 
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The sequence in which the axes are used can not be changed. The 
proper sequence is, therefore, usually expressed by a key which gives 
the specific order in which to perform the various shifts of the straight- 
edge.    For this chart the key would be: 

From (a point on) X (go) to (a point on) F, hold (the intersection) 
on AS; (go) to (a point on) Z, read W, 

The parenthetical expressions are usually omitted, and the above 
key would be expressed: 

From X to F, hold S; to Z, read W. 
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FIGURE 20.—This almement chart expresses the 4-variable equation Tr=0.6X-f0.7F-f0.6Z+2. The 

graduations on the -S axis, while useful in constructing the chart, may later be erased, as no read- 
ings are made on this axis 

In reading these charts it is convenient to mount them on a drawing 
board and then use needles (with sealing wax heads to facilitate 
handling) to hold the points read. If thia be done, the graduations 
may be erased from the S axis, for the S values need not be actually 
read, their positions on this axis being held with a needle while the 
straightedge is shifted. 

In an analogous manner charts for five or more variables may be 
prepared. Each additional variable requires two more axes and one 
more shift of the straightedge. While the labor in using these 
multivariable charts is great as compared with the 3-variable ones, 
it is small when compared with that involved in computing by means 
of the equation. 
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In charts for equations with several variables, however, this graphic 
method of locating the positions and graduations of the axes by inter- 
sections is not entirely satisfactory. Graphic inaccuracies may 
accumulate in the successive stages until the final axis is materially 
in error. It is preferable in such cases to determine the positions and 
scale units by computations rather than by graphics. 

The term "modulus'' has been adopted for the constant which if 
used in graduating any axis.    It may be defined by the equation 

U^Lf{ )._  .(X 

where L is the modulus of any variable, U is the distance of any 
graduation from the zero point on the corresponding axis, and/( ) is 
the function of the variable. 

To illustrate, in the case just solved graphically (p. 37) where 
the equation might be written— 

(Z-4) = 0.5X+0.7r 

the modulus of the X axis is given by the equation^— 

In Figure 19 it will be seen by inspection that where X= 1, C7x=one 
division of the graph paper above ^=0.    Therefore— 

l=2:x(0.5) 
and 

Lx = 2 

The equation of the modulus of the Y axis is— 

C7y = ir(0.7D 

Since, by inspection of Figure 19, where F= l,[Z7r=one division of the 
graph paper above F= 0.    Therefore— 

l = Zr(0.7) 
and 

J. 
0.7 ir=7ï^= 1.429 

From this the^two^graduating equations may^be written, 

J7x = 2(0.5Z) 
or 

Ux-X 
and 

î7r=1.429(0.7F) 
or 

UY-Y 

This merely illustrates the use of the moduli, and serves no useful 
purpose in so simple a case, in which the scale was arbitrarily made to 
coincide with the ruling of the coordinate paper. 

8553—31—6 
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However, if Lz be the modulus of the Z axis, it may be determined 
by the formula— 

U=^^ ...-.-..(XI) 

In the present iiistance— 

^      2X1.429    2.858 = 0.833 ^^   2 + 1.429    3.429 

and the graduating equation for the Z axis is— 

Vz-LzKZ) 
= 0.833 (Z-4) 

It will be found that the Z axis of Figure 19 can readily be gradu- 
ated by means of this equation if the 0 point of XJz thereon be so 
chosen as to fall on the straight line connecting the 0 points of the 
two other scales. 

The position of the sum axis is, moreover, defined by the equation— 

^-T. -- ™ 
where XZ and ZY are the distances from Z to Z and Z to F, respec- 
tively. The distances are from the left-hand initial axis to the sum 
axis and from the latter to the other initial axis; distances from left 
to right are considered positive.    In the present instance— 

XZ       2 
ZY   1.429 

Furthermore, the X and Y axes have been arbitrarily placed 12 units 
apart so that— 

Xr=ZZ+ZP = 12 

whence 
XZ^\2-ZY 

We may, therefore, write— 

12-ZF^    2 
ZY       1.429 

whence 
ZF= 5.00 

and 
ZZ= 12-5.00 = 7.00 

These two distances will be seen to agree with those obtained 
graphically in Figure 19. 

It will be seen that when any convenient assumptions are made as 
to positions and moduh of any two of the axes, the position and 
modulus of the third may be rigorously calculated by means of 
Equations X and XI. In equations involving several variables, 
where this algebraic method is always preferable to the graphic, 
any desired assumptions may be made concerning the first two axes, 
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such as X and Y in Figure 20. The position and modulus of the 
cumulating or Sum axis, S, is then calculated by the formulae. A new 
assumption may be made then as to both the position and scale of 
either the W or Z axis, and similar information calculated by means 
of the same formulae for the other. In this method the actual gradu- 
ations need never be entered on the S axis. 

The positions of the scales on the axes can be shifted up or down 
as desired, whether the graduations are regular or not. The only 
point to keep in mind is that any set of values must give the same 
answer after shifting as they gave before. This property of straight 
axis charts is of value sometimes where a scale is greatly expanded 
at one end and would go oflF the paper if the entire scale was not shifted. 
Any two scales may be placed arbitrarily in convenient positions, and 
the requisite shift of the remaining scales, necessary to compensate 
for it, can then be determined by intersections. 

PRELIMINARY ANALYSIS OF THE PROBLEM 

Now that the use of alinement charts in correlation problems has 
been explained, a series of examples will be presented to illustrate 
how the method works when appHed to actual forestry problems. 
If such problems are to be solved with the least effort and the greatest 
accuracy a thorough preliminary analysis is essential before the 
actual correlation calculations are undertaken. The chief objective 
must be decided on, and all factors entering into the problem should 
be considered so that those of minor importance may be determined 
and rejected when such rejection becomes desirable. 

The primary purpose of any problem to which this correlation 
method is applied will be (1) to define the quantitative and quali- 
tative relations between a given factor and the factors affecting it; 
(2) to produce a mechanism for estimating values of one variable from 
measurements of variables associated with it; or (3) to accomplish 
both of these results. 

In the first class of problems, where the chief objective is to define 
and measure the relation between a given effect and its causative 
factors, it is necessary to consider all causative factors, separately or 
in groups. For example, the height growth of a stand of trees is the 
direct result of duration of growth, soil and climatic conditions, 
inherent characteristics of the trees, condition and vitality of the 
individuals and of the stand as a whole, and of various abnormal 
influences such as fire and attacks of insects and fungi. Here the 
climatic conditions may be treated separately, precipitation, evapor- 
ation, insolation, temperature, etc., each considered by itself; or the 
soil and climatic conditions may be treated en masse as site quality. 

In some sciences the effect of any one of the variables can be 
investigated by keeping all others constant. In such cases, of course, 
the results apply only to the particular set of conditions under which 
the investigation was made. Variation in the dependent variable 
may be due to the joint effect of two or more causative factors, and 
a repetition of the investigation must be made for other combinations 
of the values of those causative factors. 

In the great majority of forestry problems it is impossible to keep 
constant or to control any factor or set of factors, and in most cases 
there are some which can not be isolated and measured directly. 
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Their combined effect must be measured and treated as a single 
factor. Certain abnormal factors, such as damage from fire, insects, 
and fungi, can be eliminated by a proper choice of samples. 

In the second class of problems, where the chief object is a mech- 
anism for prediction, controlled experiments are usually impossible, 
and a limited number of variables must be used. In the case just 
given (height growth) a sufficiently accurate estimate could probably 
be made from an evaluation of two of its causes, age and site quality. 
The inclusion of more variables might result in too small an increase 
in accuracy to warrant the greater complexity of the predicting 
mechanism or the greater expenditure of labor necessary for its con- 
struction. 

The predicting mechanism just cited is based on measurements of 
the causative factors. In other instances an estimate of the result 
of certain causes may be made from measurements either of the 
immediate causes or of other factors less directly related to that 
result, as in the use of diameter and height to estimate defect in 
trees. In this case the defect, while not caiised by either height or 
diameter growth, may be due in part to factors influencing both. 
In still other cases the variable estimated may be in part a mathe- 
matically exact function of the variables used in its prediction, as in 
the estimation of tree volume from measurements of diameter and 
height. 

In either class of problem the dependent variable must be decided 
upon in advance so that the alinement charts can be properly con- 
structed. The variables in such charts can not legitimately be re- 
versed any more than in other graphic processes. The errors resulting 
from such a reversal are particularly serious when the alienation 
index is high. 

COLLECTION OF DATA 

Once the objectives of the project have been decided on and the 
factors entering into it have been enumerated, the necessary data 
should be collected in proper form for the method of treatment 
decided upon.^^ 

Since the correlation method is founded on mathematical principles 
it is necessary to evaluate all factors involved in quantitative units, 
rather than in qualitative terms. Of the three major variables 
involved in most forestry problems (1) duration, or time, (2) heredity, 
and (3) the composite site quality, the first is easily evaluated in the 
customary units of time, while heredity can hardly be measured and, 
therefore, must usually be eliminated from direct consideration. The 
composite site quality must be evaluated in commensurable units ^^ 
rather than by the customary relative classification as good, medium, 
or poor. Of the many subfactors entering into site some can be 
evaluated directly, while others must be measured through their 
effects as evidenced by size, form, strength, etc. The climatic factors 
entering into site are measurable, but complete and reliable records 
are costly to obtain and seldom available, so that measurements of 
climate naust usually be obtained through measurements of its effects. 
Soil quality and competition can seldom be measured numerically, 

" In this connection it will be well worth while to read Day (8, ch. 2 andS). Although the viewpoint is 
that of business statistics, the text in general is valuable. 

" Quality of site can be expressed in terms of site index. Site index is the height attained, at a given age, 
by the average dominant tree growing on the area. 
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and they, too, must be measured through their effects. Site, there- 
fore, must usually be evaluated as a composite factor, in terms of a 
site index. 

In the indirect measurement of causes, as in their direct measure- 
ment, quantitative units must be employed instead of qualitative 
terms. In the direct measurement of insolation the units, gram- 
calories, should be used; so, also^ in measuring it indirectly through 
aspect the measurement of aspect must be in degrees of azimuth 
rather than in the descriptive terms of the points of the compass, 
such as NE, SE, etc. 

In certain problems consideration must sometimes be given to 
mcommensurable factors such as locality. This can best be done 
by first treating all localities together and, as a subsequent step, 
analyzing the deviations from the composite of the material obtained 
in each locality.        *        IP 

In other problems certain established facts can be legitimately 
employed in their solution without incorporation into the specific 
data; for instance, it is known that the board fooi>-cubic foot ratio 
increases with diameter, and such knowledge justifies the construc- 
tion of a continuously rising curve for this relationship where the 
data may, especially in the earlier approximations, indicate a dropping 
off. Such modifications will often reduce the work necessary to 
arrive at the final stages of the problem. 

EXAMPLE OP AN ANALYSIS OF CAUSES AND EFFECT 

The first illustrative example will be the problem of decomposing 
dextrose by sulphuric acid at high temperature.^^ This will show the 
type of analysis required for problems where the relationship of 
variables is in question. It will also illustrate the use of scale moduli 
in preparing the alinement chart, the influence of known facts on the 
shaping of the ciu*ves, and the interpretation of the results. The 
modification of the chart graduations wiU be accomplished, moreover, 
by a method which differs in two respects from that previously de- 
scribed, and which in some cases is more rapid. 

OBJECTIVE, ANALYSIS, AND SOLUTION OP THE PROBLEM 

The object will be to define the quantitative and qualitative rela- 
tionships between the amoimt of dextrose decomposed by sulphuric 
acid at high temperatures and the factors causing the decomposition. 

The various factors which influence the decomposition are: (1) The 
quantity of chemicals used; (2) their purity, uniformity, and stability; 
(3) the temperature maintained during the reaction; (4) the duration 
of the reaction; and (5) the imiformity of the reaction. 

The necessary data can be obtained from laboratory tests. The 
quantities of the chemicals used in such tests can be easily determined 
and expressed in weight, volume or any chemical equivalent. Purity 
can be considered as a separate item expressed in percentages, or the 
quantity of the impurity may be measured. Unifonnity and sta- 
bility are harder to evaluate, but nonimiformity can be virtually elimi- 
nated by proper choice of materials, and the factor of stability can be 
ignored if all tests are conducted within a reasonably short period of 

" This problem, wWle not a purely forestry problem, has been selected for illiKtrative purposes becaiKe 
it does not have the extreme complexity of most forestry problems. The problem and data were taKen 
from Kressmann (28, p. SO). 
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time. The uniformity of the reaction can be determined by repeated 
tests under uniform conditions and expressed in terms of a standard 
error of reaction. 

This investigation will be confined to the study of the effect of 
sulphuric acid at high temperatures upon a given quantity of dextrose 
exposed to its effects for a constant period of time. The quantity of 
dextrose and the duration of the reaction will thereby be eliminated 
as variable factors. Purity, uniformity, and stability of the chemicals 
will be eliminated as variables by using suitable materials and limiting 
the tests to a reasonably short period. The reaction is expected to be 
quite uniform and its variations, if any, are expected to be com- 
pensating.    Of the factors which affect the decomposition of dextrose^ 
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FIGURE 21.—The data of Table 8 on the decomposition of dextrose plotted in conventional 
form.   It is apparent that the fitting of harmonized ciurves would be quite difläcult 

there remain two variables to be considered—rtemperature and 
quantity of sulphuric acid. 

In addition to the factors discussed above, the results of the investi- 
gation will be influenced by experimental errors (inaccuracies in 
chemical analysis and instrumental and observational errors) and by 
personal errors in handling the data. These can not be evaluated 
and are therefore not susceptible to direct consideration. 

Direct consideration can be given, however, to certain facts known 
about the problem: The amount of dextrose decomposed can vary 
from 0 to 100 per cent; the quantity of sulphuric acid can vary from 
0 to slightly less than 100 per cent; with an acid concentration of 
0 per cent no dextrose will be decomposed. All known aspects of 
the problem have now been enumerated and further information 
must be gleaned from the results of the laboratory tests. 
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In these tests solutions of 1 gram of dextrose in 25 cubic centi- 
meters of sulphuric acid of various concentrations were held at 
various temperatures for one-half hour. . The acid concentration is 
measured in percentages and the temperature in degrees centigrade. 
The amoimt of dextrose remaining after treatment was measured as 
a percentage of the original quantity. The data for 32 such tests 
Are recorded in the first four columns of Table 8. 

With but two independent variables (temperature and acid) a set 
of harmonized curves could be used to represent the data. In this 
^ase the preparation of such a set of curves would be difficult, as is 
suggested by Figure 21, even though the variables have been limited 
in the tests to four temperatures and eight acid' concentrations. 
Had an irregular distribution of temperatures and acid concentrations 
been used it would be totally impossible to construct harmonized 
curves from so few data. 

Beneath these data, assembled in colimms 2, 3, and 4, of Table 8 
(with the dependent variable dextrose last for convenience), are 
given the statistical measures and regression equation required, with- 
out showing the computations, which are routine in character. 

TABLE 8.- -Data and computations for the dextrose problem 

la 
phuric 

acid 
(2) 

(T) 
Tem- 
pera- 
ture 
(3) 

(D) Residual dextrose 

Item No. 
Meas- 
ured 
(4) 

Estimates 

(1) 
First 

(5) 
Second 

(6) 
Third 

(7) 
Fourth 

(8) 
Fifth 

(9) 
Sixth 
(10) 

Seventh 
(11) 

Eighth 
(12) 

1 _ 
Per cent 

0.1 
.1 
.1 
.1 
.5 
.5 
.5 
.5 

1.0 
1.0 
1.0 
1.0 
1.5 
1.5 
1:5 
1.5 
2.0 
2.0 
2.0 
2.0 
2.5 
2.5 
2.5 
2.5 
3. a 
3.0 
3.0 
3.0 
5.0 
5.0 
5.0 
5.0 

°C7. 
150 
160 
175 
185 
150 
160 
175 
185 
150 
160 
175 
185 
150 
160 
175 
185 
150 
160 
175 
185 
150 
160 
175 
185 
150 
160 
175 
185 
150 
160 
175 
185 

Percent 
100.0 
94.4 
94.2 
88.8 
96.1 
92.7 
91.6 
50.0 
94.4 
83.3 
86.6 
33.3 
88.8 
80.5 
55.5 
31.1 
87.7 
75.0 
37.2 
5.5 

86.6 
72.2 
33.3 
5.0 

83.3 
71.0 
25.0 
2.7 

80.5 
38.8 
5.5 
0.0 

Per cent 
115.7 
98.3 
72.2 
54.7 

110.6 
93.2 
67.0 
49.6 

104.2 
86,8 
60.7 
43.2 
97.8 
80.4 
64.3 
36.8 
91.4 
74.0 
47.9 
30.5 
85.1 
67.6 
41.5 
24.1 
78.7 
61.2 
35.1 
17.7 
53.1 
35.7 
9.5 

-7.9 

Per cent 
122.5 
109.1 
85.8 
61.9 

112.8 
99.3 
7Ö.8 
61.7 

101.3 
88.0 
64.3 
40.2 
91.2 
77.9 
64.2 
30.2 
82.8 
69.4 
45.9 
22.0 
76.0 
62.9 
39.0 
15.2 
70.5 
57.2 
33.5 
9.7 

59.0 
46.1 
22.4 

-1.5 

Per cent 
98.1 
94.9 
88.8 
76.4 
95.8 
92.4 
85.9 
69.0 
92.9 
89.3 
79.0 
33.9 
90.2 
86.6 
64.0 
15.2 
87.9 
82.-9 
46.9 
7.5 

85.9 
77.5 
31.2 
3.9 

83.6 
69.7 
20.6 

1.8 
72.7 
47.5 
7.7 

-1.1 

Per cent 
99.0 
94.6 
89.6 
81.0 
96.4 
91.8 
86.5 
67.0 
93.2 
88.3 
79.7 
40.5 
90.4 
84.9 
63.8 
18.4 
87.8 
78.8 
44.2 
8.2 

85.8 
69.3 
28.8 
4.1 

83.3 
68.8 
19.2 
1.8 

74.0 
36.5 
8.0 
-.6 

Per cent 
102.6 
96.6 
90.2 
80.0 
99.2 
93.1 
86.6 
64.8 
95.0 
88.8 
78.2 
40.3 
91.4 
84.7 
61.6 
20.8 
88.0 
77.2 
43.5 
10.2 
85.6 
67.2 
30.2 
5.2 

82.8 
56.7 
21.7 
2.2 

71.9 
37.1 
10.0 

-2.0 

Per cent 
102.6 
97.0 
90.6 
79.2 
99.0 
93.2 
86.4 
62.2 
94.8 
88.8 
78.4 
36.5 
91.4 
84.8 
62.5 
19.0 
88.3 
78.8 
45.7 
10.0 
86.2 
71.0 
34.3 
5.7 

84.0 
61.8 
25.0 
3.0 

75.3 
42.6 
12.5 

-1.4 

Per cent 
103.0 
97.2 
90.6 
79.0 
99.3 
93.3 
86.3 
61. 5 
95.0 
88.8 
78.2 
35.2 
91.5 
84.7 
61.9 
17.3 
88.3 
78.5 
44.6 
8.3 

86.1 
70.5 
33.0 
3.9 

83.9 
61.1 
23.5 
1.2 

75.0 
41.2 
10.9 

-3.4 

Per cent 
102 9 

2  96 7 
5__  90 2 
4  79 6 
5  99 0 
-6  92 8 
7   86 1 
8  63 4 

-Q ._  94 9 
10  88 4 
11  78 4 
12--  38 0 
13   91 2 
14__  84 0 
15.  62 0 
16  20.0 

88.3 
78.3 
45.2 
10.1 
85.9 
70.0 
33.3 
5.2 

83.4 
60.8 
24.7 
2.1 

76.1 
4o. 2 
11.3 

-2.6 

17 _ 
18  
19 - 
•20.-. _. 
^1  
:22 — 
:23   
24  
25 _. 
^6  
27-  
•28 ..... 
2Q  
30  
31-_........ 
;32  

Total. 62.4 5,360 1,970.6 1,970. 7 1,976.3 1,968. 4 1,952.9 1,961. 4 1,989.1 1,969. 4 1,978.9 

Means  1.95 
1.47 

167.5 
13.46 

61. 58 
33.13 SD  

SE  13.93 
.420 

12.17 5.91 5.91 5.85 5.36 5.35 5 33 
AC.  
AL...  .367 .178 .178 .177 .162 . 161 161 ce  .908 
d.....  .930 .984 .984 .987 .987 .987 987 

Regression equation: D= -12.7787 S -1.7426 T +378 3924. 
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The alienation coefficient of 0.420 indicates that only 100 — 42, or 
58 per cent of the variation about the mean value of dextrose has 
been eliminated by using the regression equation (or the plane it 
represents) for estimating the values of dextrose. Figure 22 illus- 
trates the original data and the plane representing the regression 
equation of— 

i?= - 12.7787/S-1.74267+378.3924 

The chart used is illustrated in Figure 23, B. This form of chart, 
with the center scale reading down and the outer scales reading up, 
was adopted since all yariables could not be given positive signs by 
transposition in^he regression equation. 

FIGURE 22.—The plane of the regression equation shown above, with the basic data indicated by 
circles. Note that impossible values over 100 per cent and less than 0 per cent are shown hf 
the plane.   These indicate the nee,d of curving.   Compare with Figure 25 

The scale for sulphuric acid on the original chart was chosen as 
0.5 per cent per inch and that for temperature as 5° per inch. The 
axes were located 6 inches apart. (Fig. 23 is a photographic repro- 
duction on a reduced scale.) The axis for dextrose lies between them, 
and its position and scale were located by intersections as described 
under Construction of the Alinement Charts Needed, page 37, and 
checked by Formulas XI and XII. 

GRADUATING CURVES 

A new feature is here introduced, the graduating curve. Instead 
of computing and measuring the position of the dextrose graduations 
intermediate between zero and 100 per cent a graduation distance- 
graduation value curve was prepared.    For such a curve the distance 
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of each graduation from a fixed point on the axis is plotted over the 
value of the graduation and a curve fitted. The distances of inter- 
mediate graduations from the fixed point are read from this curve. 
When the interval between graduations is uniform the graduating 
•curve is a straight line. Such is the case with this scale, and but two 
points are necessary to locate the line, although a third point is de- 
sirable to check the work. Figure 23, C, indicates the preparation 
of the graduating curve and the graduation of the D axis. For the 
dextrose axis the three points to define this line were located by inter- 
sections. Similar graduation distance-graduation value curves are 
prepared for each of the other axes. (Fig. 23, A and D.) These 
graduating curves somewhat simplify the work at this point but are 
ohiefly useful in later stages. It wül be apparent that this type of 
curve is merely a graphic presentation of Formula X (p. 41), to 
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FIGURE 23.—The alinement chart for the regression equation on page 48, with the graduating curves 
for each axis. B is the alinement chart, with construction lines. A, C, and D are graduating 
curves for the three axes; the straight lines apply to the original chart while the curves in A and 
D result from the first estimate 

which a constant term has been added.    This constant is the distance 
from the fixed point on the axis to the zero point of the scale. 

Sufficient graduations should be provided on the D axis to permit 
Ä reading for any pair of values for S and T, even though such 
readings may be negative or over 100 per cent. 

COMPUTATION OF RESIDUALS BY ABRIDGED METHOD 

The first estimated values are now read from this chart as usual. 
These values are entered in column 5, Table 8. As a short cut, in- 
stead of computing individual residuals, the average residual is 
obtained from the totals of measured and corresponding estimated 
values, grouped first by acid concentration and then by temperature. 
The difference between the total of measured values and the total of 
estimated values of each class, divided by the number of items, is 
the deviation of the measured average from the estimated average. 
As usual, these deviations are considered positive if the measured 
exceeds the estimated, and negative if the measured is less than the 
estimated.   Column 5 of Table 9 shows these values. 
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TABLE 9.—Group-average deviations, residual dextrose 
GROUPED BY SULPHURIC ACID 

Class Aggre- 
gate 

meas- 

First estimate D Third estimate Fifth estimate Seventh esti- 
mate 

Aver- 
age 

Items aver- Aver- resid- 
ual 

times 
Aver- Aver- Aver- age! ured Aggre- age Aggre- age Aggre- age Aggre- age 

gate resid- gate resid- gate resid- gate resid- 
ual correc- 

tion 
dis- 

tance 5 

ual ual .   ual 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

Number Per cent Per cent Per cent Per cent Inches Per cent Per cent Per cent Per cent Per cent Per cent 
0.1 377.4 340.9 4-9.12 -1.46 358.2 +4.80 369.4 +2.00 369.8 +1.90 
.5 330.4 320.4 +2.50 -.40 333.1 -.68 343.7 -3.32 340.4 -2.50 

1.0 297.6 294.9 +.68 -.11 295.1 +.62 302.3 -1.18 297.2 +.10 
1.5 255.9 269.3 -3.35 +.54 255.9 .00 258.5 -.65 255.4 +.12 
2.0 205.4 243.8 -9.60 +1.54 225.2 -4.95 218.9 -3. 38 219.7 -3.58 
2.5 197.1 218. 3 -5. 30 +.85 198.5 -.35 188.2 +2.22 193.5 +.90 

4 3.0 182.0 192.7 -2.68 +.43 175.6 +1. 60 163.4 +4.65 169.7 +3.08 
5.0 124.8 90.4 +8.60 -1.38 126. 8 -.50 117.0 +1.95 123.7 +.28 

32 1,970. 6 1,970.7 1,968.4 1,961. 4 1,969. 4 

GROUPED BY TEMPERATURE 

8 
8 
8 
8 

150 
160 
175 
185 

717.4 
607.9 
428.9 
216.4 

736.6 
597.2 
388.2 
248.7 

-2.40 
+1.34 
+5.09 
-4.04 

+0.26 
-.15 
-.56 
+.44 

707.0 
640.7 
424.1 
196. 6 

+1.30 
-4.10 
+.60 

+2.48 

716. 5 
601. 4 
422.0 
221. 5 

+0.11 
+.81 
+.86 
-.64 

722.1 
615.3 
429.0 
203.0 

-0. 59 
-.92 
-.01 

+1.68 

32 1,970.6 1,970. 7 1,968.4 1,961.4 1,969.4 

1 Ä in top section of table; T in lower section. 
2 The deviation of the measured aggregate from the estimate aggregate, divided by the number of items. 
3 Correction distances: For 5scale, 0.16 inch per 1 per cent; for Tscale, 0.11 inch per 1 per cent. 

USE OF CORRECTION DISTANCES IN ALTERING THE GRADUATING CURVE 

The next step is the relocation of the graduations on the S and T 
axes so that the dextrose readings will be greater or less than formerly 
by an amount equal to the departure of the measured average of each 
class from the estimated average. Correction distances are first 
determined for the S and T axes. In each case this is the distance ^^ 
which any graduation must be moved along the axis to produce a 
positive change of one unit in the reading of the D axis. These cor- 
rection distances may be determmed graphically or may be com- 
puted.    The general formulas for such correction distances are— 

cor.   A.^ yy   ^Z- .(XIII-A) 

cor. Y=^Lz (XIII-B) 

" This may conveniently be in terms of graph paper divisions. 
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where cor. X, cor. Y denote the correction distances for X and Y, and 
XY, XZ, ZY are the distances between the axes and Lz is the modulus, 
of the Z axis.   For this problem these formulas become— 

cor. >S'=^iz> = p|(-0. 0338V -0. 08 inch 

cor. r=^iö-j^(^-0.0338 V-0.06 inch 

LD could be computed but was determined in this case by measuring 
the distance between the 0 and 100 per cent graduations and dividing 
by 100. By inspection, its sign is negative since the scale increases 
downward while those for S and T increase upward. 

The negative correction distances indicate that a downward move- 
ment on the S and T axes is necessary to increase D. The algebraic 
products of these correction distances and the class-average devia- 
tions computed above (entered in column 6, Table 9) are measured 
off (according to their signs) above or below the proper graduation 
distance—graduation value curve, over the average temperature or- 
average percentage of aóid of the class. (The resiuts are the plotted 
points in Figure 23, D and A), Smooth curves are drawn through. 
these series of points; these curves give the revised graduation dis- 
tances to be used in regraduating the S and T axes prior to making a. 
second estimate. There are two advantages in this method. It is 
unnecessary to compute net regression equations or plot net regression 
lines, and each regression curve is drawn to such a scale (its direction, 
may sometimes be reversed) that it may be used directly as a graduat- 
ing curve. Cases may arise, however, as will be explained later,, 
where this method is inadvisable. 

The necessary graduations are next entered, lightly, with soft 
pencil, for they are to be erased subsequently, and the next estimate 
read as entered in column 6, Table 8. 

The measured-second estimate curve is prepared (Table 10 and 
fig. 24), as in the previous example.    Since it is known that the 
limits of dextrose are 0 and 100 per cent, this curve is so drawn that 
it varies only between these values.    The curve through these points 
is now used for relocating the graduations of the D axis.    The method 
is illustrated by the broken lines in the lower left-hand portion of 
Figure 24.    Any reading on this axis, such as d, should be altered, 
to read d\   This may be accomplished by placing the revised d' 
graduation where the ¿graduation was previously.    These correc- 
tions may profitably be incorporated into  the graduating curve 
(fig. 23 C) by plotting the graduation distance of d over d'.    As many 
such points are plotted as are desired for locating this new curve of 
graduation distances, by means of which the new graduations are- 
entered (in pencil, as previously done for S and T). 
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^iGUKE 24.—The measured-second estimate D curve, for reading the third estimate and for regraduat- 

ing the D or dextrose axis 

TABLE 10.—Computations for measured-estimated D curves 

SECOND ESTIMATE 

Items 

Estimated D 
Meas- 

ured D, 
average 

Items 

Estimated D 
Meas- 

ured D, 
average Class limits Average Class limits Average 

Number 
1 
1 
1 
2 
3 
3 
4 

Per cent 
-10.0- 0.0 

.0-9.9 
10.0-19.9 
20.0-29.9 
30.0^39.9 
40.0-49.9 
50.0-59.9 

Per cent 
-1.5 

9.7 
15.2 
22.2 
34.2 
44.1 
55.5 

Per cent 
0.0 
2.7 
6.0 
5.6 

29.8 
36.4 
64.2 

Number 
4 
4 
3 
2 
2 
1 
1 

Per cent 
60-0. 69.9 
70.0- 79.9 
80.0-89.9 
90.0- 99.9 

100:0-109.9 
110.0-119.9 
120.0-129.9 

Per cent 
64.6 
75.0 
86.5 
96.2 

106.2 
112.8 
122.6 

Per cent 
80.6 
85.5 
88.4 
90.8 
94.4 
96.1 

100.0 

FOURTH ESTIMATE 

1 -10.0-0.0 -0.6 0.0 1 50.0-69.9 68.8 71.0 
!                4 .0-9.9 6.6 4.7 3 60.0-69.9 66.7 59.2 

2 10.0-19.9 18.8 28.0 3 70.0-79. 9 77.6 80.7 
1 20.0-29.9 28.8 33.3 8 80.0-89.9 86.9 87.0 
1 30.0-39.9 36.6 38.8 6 90.0-99.9 94.2 94.4 
2 40.0-49.9 42.4 35.2 

SIXTH ESTIMATE 

1 
2 
3 
1 
2 
2 

-10.0-0.0 
.0-9.9 

10.0-19.9 
20.0-29.9 
30 0-39.9 
40.0-49.9 

-1.4 
4.4 

13.8 
25.0 
35.4 
44.1 

OO 
3.8 

14.0 
26.0 
33.3 
38.0 

3 
5 
6 
6 
1 

50.0- 59.9 
60 0- 69.9 
70 0- 79.9 
80.0- 89.9 
90.0- 99.9 

100.0-109.9 

62.2 
76.5 
86.4 
94.3 

102.6 

58.8 
80 6 
85.6 
93.4 

100.0 

The third estimates are read from the measured-second estimate 
«curve of Figure 24, then grouped by temperature and acid classes, as 
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before, and the total and class-average deviations entered in columns- 
7 and 8 of Table 8. The sums of the measured values, by classes, 
will be the same as those previously determined and need not be^ 
computed anew. Class-average deviations multiplied by the correc- 
tion distances are plotted around the second graduation distance- 
graduation value curves,^^ which, to avoid confusion, are copied on- 
to another sheet of paper. These curves could be plotted on the sheet 
on which the alinement chart is drawn, but this is apt to cause con^ 
fusion, especially if many estimates or variables are necessary. The:^ 
pencil graduations previously entered are erased and new ones entered 
(also in pencil). 

FIGURE 25.—The surface represented by the final alinement chart of the dextrose problem, with 
basic data shown by circles.   Compare with Figure 22 

The succeeding estimates present no peculiarities, and no further 
change is necessary after the eighth estimate. The standard error i& 
found to be 5.33, and the final alienation index is 0.161, showing that 
only 16.1 per cent of the original variation about the mean value of 
D remains. 

18 This relocation of the independent variable graduations is not strictly comparable with the correction, 
made after the first estimate because of the variable spacing introduced in the D axis. However, in a. 
number of instances besides this one, this method gives better results than the more fimdamentally sound 
but slightly less simple method described later (p. 72). 
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FINAL CORRECTION 

The multiple alienation coeíñcient between the last residuals, tem- 
perature, and acid concentration, was computed, using, for the most 
part, the calculations made for the original regression equation. The 
alienation coefficient obtained was 0.9968. Were the corrections 
indicated made, the final alienation coefficient would be— 

final ^/=(^/DST)(-4/e8t) =0.161X0.9968 = 0.1605 

indicating a reduction of variation of only 0.05 per cent, which is not 
sufficient to warrant modif3mig the chart. The final graduations are 
therefore entered in ink. The surface represented by the final aline- 
ment chart is shown in isometric projection in Figure 25, together 
with the basic data, shown by circles. 

INTERPRETATION OF RESULTS 

The results of this analysis show that the extent of decomposition 
of dextrose depends primarily upon the action of heated acid,* and is 
not the sum of the effects of heat and acid working individually. 
Otherwise, the curves (fig. 25) for various values of acid or of tem- 
perature would have been sinailar in form. That the reaction caused 
by variation in one factor is not similar in extent for all values of the 
other factor is quite apparent from Figure 25, This conclusion would 
also be reached from an inspection of the final graduating curves, in 
which extreme reverse curvature is exhibited in that for dextrose 
while those for temperature and acid are somewhat similar. 

The remaining variation in the data, 16.1 per cent of the original 
variation, may be attributed, among other things, to discrepancies 
in measurements of materials and in analysis of chemicals, to varia- 
tions in temperature during the experiment, and to nonuniformity 
of materials. 

EXAMPLE INVOLVING THE DEVELOPMENT OF A PREDICTING 
MECHANISM 

An example of the second type of problem, in which a predicting 
mechanism is the primary object, is a study of bark thickness. The 
object of the study was to find the factors giving the best indication 
of bark thickness (of shortleaf pine) and to incorporate them into a 
mechanism for predicting bark thickness at any point on the stem. 

The analysis of the problem and the method of selecting the 
measurements to be employed will be given. The construction of a 
chart for more than three variables, employing one axis twice, and the 
combined use of regression lines and graduating curves will be new 
features illustrated. The effect of high intercorrelation between 
independent variables will be shown, and the approximate standard 
error will be used for measuring improvement in predictions . 

The factors affecting bark thickness are of two types, those causing 
bark growth and those causing removal of its outer surface. Direct 
measurement of either type of factor is difficult, and for a predicting 
mechanism recourse must be had to indirect measurements. Of the 
causes of cambium activity resulting in bark growth the most usable 
and easily obtained measurements are age, site index, and dimensions 
of the tree. Of the causes of bark removal—such as furrowing and 
action of frost, wind, rain, and fungi—no good indicator can be ob- 
tained.    Age and site index are the best, but site index is chiefly a 
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measure of combined soil and climatic effects during the growing 
season, whereas bark reduction is more the effect of climate alone 
throughout the entire year. However, site index will be given con- 
sideration in the initial steps. 

A list of the measurements from which it may be possible to predict 
bark thickness ^^ will include site index, age, diameter at breast height, 
total height of tree, and diameter of the stem at various heights (both 
absolute and as a percentage of total height). Several other factors 
might be listed, such as crown class, crown vigor, crown density, 
locality, aspect, and heredity, some of which are incommensurable. 
Crown class, vigor, and density may be evaluated by some expression 
of current annual growth (rings per inch, current annual increment, 
etc.), but this does not measure their cumulated effect upon bark 
growth, whereas diameter more nearly does. Locality and heredity 
do not lend themselves to easy evaluation, while aspect, in terms of 
azimuths, is a very unsatisfactory value to work with. These six 
last-named variables hold little promise and would complicate the 
predicting mechanism. They are accordingly rejected. To deter- 
mine which of the remaining variables have greatest value for pre- 
dicting purposes a multiple regression equation (A), including all the 
remaining variables, was computed with bark thickness as the de- 
pendent variable.    The equation obtained was— 

A)—Bark thickness (inch) =0.000775 site index+0.0626 d. b. h.-0.00752 total height. 
Range of variable       — 54 feet. 9 inches. 72 feet. 
RangeXcoefflcient      =   0.0418 inch. 0.563 inch. 0.541 inch. 

+0; 00519 total age-0.0207 section d. i. b.-0.000941 section height (feet). 
68 years. 15 inches. 85 feet. 

0.333 inch. 0.310 inch. 0.0800 inch. 

-0.00987 section height (per cent) -0.00447 section age +0.751. 
100 per cent. 80 years. 

0.987 inch. 0.358 inch. 

The multiple alienation coeiEcient was 0.575. 
The range of measurements (difference between maximum and 

minimum) is given below the equation, and below that is given the 
corresponding variation in bark thickness (range of measurements 
times regression coefficient). Considering both the regression coeffi- 
cient and the maximum variation in bark thickness associated with 
each variable, the use of site index, tree and section ages, and section 
height in feet will not increase the accuracy enough to offset the 
increased number of measurements needed nor the increased com- 
plexity of the predicting mechanism.^ Accordingly these variables 
are rejected and a new regression equation (B) computed for those 
remaining.^^ 

This equation was— 

(B)—Bark thickness (inch) 
= 0.070339 d. b. h - 0.006002 total height - 0.033235 section d. i. b. 

-0.009778 section height (per cent)+ 0.78716. 

19 The correlation of diameter outside bark with diameter inside bark (and other variables) is an alterna- 
tive treatment. This was not used, however, because the diameter inside bark is the major component of 
diameter outside bark, and high correlation naturally would be obtained. Significant differences in bark 
thickness would appear as very minor variations in the relation between diameter outside bark and inside 
bark, thus obscuring the presence of any factor having an appreciable influence on bark growth. 

20 Section d. i. b., while apparently less important than total age and section age, must be retained for 
practical reasons. It will be needed if diameter outside bark at points up the tree are for any reason to be 
calculated. 

21 The squares, products, sums, and standard deviations necessary have already been computed in 
connection with the preceding equation, so relatively little work is necessary for the new equation. 
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The alienation coefficient was 0.577, only 0.002 more than for all 
variables, a fact which confirms our judgment that four variables, 
may be dropped without appreciable loss in accuracy. Although the 
regression coefficient for total height is now small it is not certain 
that a curvilinear relation does not exist, and it is therefore retained.^^ 

Of the four independent variables retained, it is quite likely that 
one of the sectional measurements (section d. i. b. or percentage 
height) might be reflected in the other should either be removed from 
consideration. With total height and d. b. h. considered there should 
be moderately high correlation between section d. i. b. and percentage 
height, although form varies between trees of the same height and 
d. b. h. To analyze this two regression equations were computed 
with section d. i. b. and section height (per cent) omitted in turn» 
These were— 

(O—Bark thickness = 0.0498 d. b.h.-0.00666 total height-0.00734 
section height (per cent)+ 0.702 

(D)—Bark thickness = 0.00366 d. b. h.-0.00862 total height+ 0.0773 
section d. i. b. +0.434. 

The alienation coefficient was 0.590 for equation C and 0.724 for 
equation D, as compared with the 0.577 for equation B, with both 
section d. i. b. and section height (per cent) included. The small 
difference between the coefficients for equations B and C indicates 
that in applying the result to trees of average form the three measure- 
ments d. b. h., height, and section height (per cent) are sufficient. 
If form class were recognized, it would be necessary to retain both 
section d. i. b. and section height (per cent) or to include form quotient 
in equation C. Obviously, a predicting mechanism based on equation 
D, with an alienation coefficient of 0.724, would be less satisfactory 
than one based on equation B or C. 

This particular study was for application to trees of average form, 
but equation (B) including both section d. i. b. and section height 
(per cent) will be developed because it illustrates several points not 
encountered in the development of equation (C), the more satisfac- 
tory of the 4-variable equations. 

THE ALINEMENT CHART 

An alinement chart for five variables requires seven axes,^ one 
for each independent variable, one each for the two intermediate 
sums, and one for the final sum (the dependent variable). By proper 
design some of these axes may be made to coincide, thus reducing the 
number appearing on the chart. 

The initial chart (fig. 26) was constructed as follows, to agree with 
the regression equation B : 

The chart was assembled progressively, starting with two of the 
independent variables and adding one variable at a time. Because 
of the possibility of magnified and cumulative errors due to slight 
inaccuracies in mechanical drawing, the graphic method of locating 

22 The variables rejected above could have been tested for curvilinearity by carrying them through 
one or two approximations, but the large number of data together with the small likelihood of developing 
appreciably curved regression lines led to the omission of such a test in this case. Also, site index and ages 
are closely associated with the retained measurements of the tree, and are thus included by implication. 
Height of the section, in feet, is also included in another form in the two measurements of total height 
and percentage height. 

23 The number of axes required is 3 less than twice the number of variables. 
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FiGtJRE 26.—The alinement chart for the hark-thickness regression equation B: 
jB=0.070339D-0.006002íí-0.033235d-0.009778A+0.78716 

The B axis is also used to hold Si values, which need not be read and hence require no s 
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the position of the axes was abandoned in favor of calculated values. 
For the start two variables alike in sign (a matter of personal prefer- 
ence) were selected, namely, section height (per cent) as A, and 
section d. i. b. as d, both with negative coefficients. The sum axis 
{Si) for these two components of the chart will be between the others 
if all scales increase in the same direction. For convenience, these 
scales will be made to increase from the bottom to the top. The 
distance between h and d was made 8 inches, the scale for h was made 
+ 0.1 inch for each percentage unit, and for ¿, +0.5 inch per inch of 
diameter.    From Formula X (page 41) we have— 

Un-Lnfih) 

^^^"(-0.009778/^)^    ^"-"^^ 

In a similar manner— 

U,^Laf(d) 

j 0.5¿   
-^^"(-0.033235^)^    ^^-"^ 

Since the distance hd has been made 8.0 inches— 

hSi^hd-84=^8.0-Sid 

Now, from Formula XII (p.42)— 

hSi^L, 
Sid   La 

Substituting— 

8,0--Sid    -10.23 
Sid     "-15.04"^-^^^^ 

Sid = 4.76 

ÄÄi = 8.0-4.76 = 3.24 

The Si axis is accordingly entered parallel to and 3.24 inches to 
the right of the h axis. Its scale need not be entered since no values 
are to be read from it, but the modulus will be needed for subsequent 
calculations, and so is computed as foUows; 

-10.23 (-15.04) 
-10.23+ (-15.04) 

153.86 
-25.27 = -6.09 

To the chart as it now stands an additional axis (H) for another 
independent variable is added.   This is done by considering the 
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Si axis as one component of a new chart and H as the second com- 
ponent. Another axis {S2) will be needed for their sum. Total 
height, with a negative coefficient —0.006002, will be taken for 
H. The axis for 2î will be arbitrarily placed 5.76 inches to the right 
of Si, with a scale of +0.1 inch per foot, increasing in the same 
direction as the preceding ones. ^2 will therefore lie between Si 
and H.    The following computations give its position and modulus— 

LH- 
Vs O.IH 

-16.66 
~J{H)    (- -0.006002fr)" 

S1S2 
S2H                          S2H. 

-6.09 
-16.66 

S^H^ = 4.22 

Ls,- 
J-'SiJ-'B 

= T     A-T    = 
-6.08(-16.66) 

" _ ß no j-^ _ 1 fi ßß^ 
101.29 
_00 IA = -4.45 

There now remains one independent variable (d. b. h.) to be added 
to this chart. S2 is then considered as the first component of a new 
chart, d. b. h. (Z>) as the second component, and their sum will 
equal bark thickness {B) minus the constant (by transposition in 
the regression equation.) Since the regression coefiicient for D is 
positive it would be necessary, in order to have all scales increase 
in the same direction, to transpose the equation as follows— 

— iS'2 + Z> = (5 — constant) 

— S2 — (B — constant) =—B 

which then places the D axis between those for /S2 and B. However, 
it is desired to make the ß axis coincide with the /Si axis, and there 
is rather too little space for D between Si and ^2 {SiS2 = SiH—S2H= 
5.76 — 4.22 = 1.54 inches). Accordingly, the B scale is made to read 
in the opposite direction from the others. By reversing the sign of 
B (and hence the direction of the scale) the equation becomes— 

-- /S2 + Ö = — (B — constant) 

S2 = D+(B—constant) 

thus making S2 the central scale. The scale for D was taken as 
+ 0.5 in. per inch of d. b. h. Since the moduli of àS'2 and D have been 
fixed, as have the positions of the B and S2 axes, Formula XII is 
used for finding BD. 

_0,5Ö_^ 
^   0.070339Z?    '   '^ 

Since S2B = Ä2S,= 

S2B 
BD~ 

Ls2    -4.45        -__- 
-ir 7.11  =-0-626 

S1S2-- = -1.54 

Í¿'=    0-626 

BI> = 2.46 
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D is therefore placed 2.46 inches to the right of B, 
Bis— 

The modulus of 

LS^LD      -4.45X7.11 

Ls2 + LD -4.45 + 7.11" 
-31.64 
2.66 = -11.9 

The key to the chart is, then, 

From h to d, hold Si (B); to H, hold S2, to Z?, read B (Si), 

To graduate the B axis, the elevation of any graduation of B should 
be determined and plotted over its value and a line drawn through 
this point with a slope of —11.9 inches per inch of bark. From 
this graduating curve the scale of B is entered, thus completing the 
chart. 
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FIGURE 27.—The regression straight lines, first estimate residuals and regression curves for bark 
thickness 

First estimates for all items are next made, the measured and first 
estimated values are grouped by independent variable classes, and the 
class-average deviations are computed. Correction distances, how- 
ever, will not be used in this problem. This is advisable because 
with many-variable charts, the correction distance for sorne of the 
variables may become too large, and the dispersion of residuals so 
plotted may be too great to permit of the fitting of a curve with 
facility. In such cases the regression-line method used in the first 
illustrative problem (p. 24) should be reverted to. In this study 
regression lines will be used for all variables, although the correction 
distances for H and D are still small enough to permit of their use. 

REGRESSION LINES 

The net regression straight lines are drawn (see p. 25), deviations 
plotted about them, and regression curves fitted.    (Fig. 27.)    It will 
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be noted that those indicated for D 
and for H curve in the same direc- 
tion; and since d. b. h. and height 
are known to be intercorrelated it is 
well not to put in all of the curvature 
indicated, lest some may have to be 
removed in later approximations. The 
curvature for h is considerable, but 
well defined. That for d tends to rise 
toward the right, after dropping from 
the left. This right end is rather 
poorly defined, and it is quite prob- 
able that the rise indicated is acci- 
dental. Accordingly, this rise will 
not be put in untü its correctness is 
confirmed by subsequent estimates. 
The d curve is, therefore, kept drop- 
ping toward the right, instead of rising 
as the points indicate. 

GRADUATING   CURVES FROM REGRESSION 
CURVES 

The graduating curves correspond- 
ing to these regression curves are 
next prepared by locating a series of 
points as follows (fig. 28): 

For a section height of 10 per cent the 
value of bark thickness is read from 
the new regression curve. The sec- 
tion height for which the original re- 
gression line gives the same bark thick- 
ness is next determined to be 23 per 
cent. On the graduation distance- 
graduation value curve for h a point 
is plotted over 10 per cent at the same 
height as the original 23 per cent. 
A number of points are thus located 
and the new graduating curve drawn 
through them. Graduating curves for 
each independent variable are thus 
prepared, the alinement chart re- 
graduated and a second estimate read. 

Its approximate standard error ^* 
was 0.117, which is to b^ compared 
with the standard deviation of 0.300 
and with 0.169, the true standard 
error of the first estimate. As in 
the previous examples a measured- 

24 Because of the large number of data, the improve- 
ment with each estimate was indicated by the approxi- 
mate standard error, 1.2b^AE. AE can be obtained 
as shown under Short Cuts in the Appendix without 
computing the deviation of each item. Its use with 
small numbers of data is inadvisable, since it may fail to 
eflect minor improvements. 
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second estimate curve is prepared, the bark-thickness axis regraduated 
and a third estimate read. The third estimate is treated as was the 
first, the deviations being plotted (fig. 29) about copies of the second 
regression curves (broken fines) to avoid confusion.^^ The D and H 
curves (not shown) each indicate increased curvature, which is entered. 
The h curve retains its general outline, but reduces its curvature 
slightly. The curve for d reverses the direction of curvature, indicat- 
ing that it is closely correlated with another variable, h. 

EFFECT OF INTERCORRELATION OF TWO INDEPENDENT VARIABLES 

The subsequent curves for D and H show less change in curvature 
and have become quite stable in position. Those for d and h give 
evidence of an oscillation in curvature as shown in Figures 29 and 30. 
If the change in curvature indicated is only partly entered, they will 
eventually reach a stable position. However, even though these two 
curves continue to shift, the shift is compensating in effect, and the 
accuracy of the chart is not affected, as is shown by the standard 
errors, which, for the third, fourth, and fifth estimates (0.124, 0.123, 
and 0.121, respectively), are almost identical, although these two 
regression curves have shifted considerably. 

At this stage a multiple correlation of the residuals should show 
whether or not a tilt of the regression curves would eliminate the 
swinging. Such a correlation was computed, resulting in an aliena- 
tion coejfficient of 0.955 and a regression equation of— 

Bark thickness residuals (inch) =0.0004000-0.0000862iî-0.00162d 
-0.000132A +0.0174 

The tilt indicated by the coefficients is very small for all variables. 
The final alienation coefficient, were the indicated corrections made, 
would lower the alienation coefficient from 0.403 to— 

0.403X0.955 = 0.385, 

an improvement too small to warrant the effort necessary. The cor- 
responding improvement in the standard error would be from 0.121 
to 0.116. 

A predicting mechanism has been developed, enabling the calcu- 
lation, with satisfactory accuracy, of bark thickness and hence of 
outside-bark diameters, for all points on the stems of second-growth 
shortleaf pine of average form. Inside-bark stem measurements must 
be known, of course, to apply the results when bark volume or outside 
bark diameters are desired. 

A simpler chart, easier to make and to use, could doubtless have 
been developed with the variable of section diameter omitted, thus 
eliminating the oscillation of the regression lines. For some purposes 
such a chart would be adequate, but for computing bark volume or 
outside bark diameters additional information as to stem measure- 
ments is as essential for its application as with the chart which has 
been prepared. It might also be advisable—^were the object the de- 
velopment of the best predicting mechanism rather than the illustra- 
tion of a method—to investigate the possibilities of an even simpler 
chart in which but two independent variables, D and A, are used. 

2« The original straight regression line is copied also, for use in regraduating the chart, since it is some 
what easier to refer the new curve to the straight line. 
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COMPLEX PROBLEMS AND INADEQUATE DATA 

The diflficulty of interpreting analyses of complex problems, par- 
ticularly when based on records in a form not suited to the method 
of analysis, will be illustrated by a study of the damping-oif of conifer- 
ous seedlings ^^ in which the variables have a periodic character. 

The data obtained comprised twice-daily records (1) of the per- 
centage of seedlings showing symptoms of damping-off, and continu- 
ous records of (2) evaporation, (3) soil temperature (curved), (4) 
air temperatures, and (5) soil moisture. 

The objective of the problem was the definition of the type of varia- 
tion in damping-off associated with each of the above factors or 
causes contributing to the appearance of damping-off symptoms. 
Air temperature was not used because it is reflected in the evapora- 
tion data. Variables will, therefore, be restricted to (1) number of 
days since germination of first seedling, (2) evaporation, (3) soil 
moisture, (4) soil temperature, and (5) number of damped-off seed- 
lings, as the dependent variable. 

Of these variables, two are expressed as rates; number of seedlings 
damped-off is given as the percentage (of initial number) damped-off 
per hour; evaporation is given in cubic centimeters per hour; soil 
moisture as a percentage; soil temperature in degrees Fahrenheit. 

There is a cycle 24 hours in length involved in each of the last four 
variables, but only for the last three variables have the data been 
taken in such form that the cyclic fluctuations can be analyzed. In 
recording the data for damping-off in terms of average values for day 
and night this cyclic fluctuation is obscured and it therefore becomes 
necessary to treat the other variables in a comparable manner to avoid 
erroneous results. Accordingly, average values for each period are 
used for soil temperature, sou moisture, and evaporation. This pro- 
cedure is dictated by the character of the records and. does not 
represent the most desirable method of analyzing this type of problem. 

The regression equation computed for these data was^— 

Number of seedlings damped-off (percentage of initial number) == 
- 0.0469 X age (days) - 0.0069 X soil temperature (° F.)-f 0.0288 X 
evaporation (cubic centimeters per hour) —0.0039 X soil moisture 
(per cent)+ 1.4713 

The alienation coefficient was 0.785. 
Proceeding with the analysis, in the way already described, the 

regression curves shown in Figure 31 were obtained with the sixth 
estimate.    The final alienation coefficient was 0.403. 

The curves for age, evaporation, and soil temperature appear to be 
reasonable; the older seedlings are more hardy, and fewer of the dis- 
eased seedlings will show decided symptoms, their increased stiffness 
making detection of the diseased condition harder. Increased 
evaporation increases transpiration and the wilting indicative of 
damping-off becomes more apparent. The increase in disease- 
progress with an increase in temperature, up to about 70^ F., is in 
accordance with general knowledge of fungus growth. The first 
curve, for soil moisture, is rather peculiar, since it is known that the 

w The data for this study were made available through the courtesy of Carl Hartlev (I4, p. 75-79), of the^ 
Bureau of Plant Industry. 
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disease progresses more rapidly in wet soil than in dry. Several 
interpretations may be given. Since the dependent variable is the 
number of seedlings showing symptoms of damping-ofï (wilting), one 
interpretation may be that when soil moisture is near the wilting 
coefficient a number of nondiseased seedlings may wilt, thus indicating 
a larger number affected when the soil moisture is low. The portion 
of the curve above 20 per cent is in accord with the known relation of 
moisture to the disease growth. 

The shape of this curve lends little support to a suggestion made by 
Hartley, in his discussion of the data, that increased soil moisture will 
reduce the amount of air in the soil, thus reducing the disease activity. 
This decrease of air in the soil is a variable which has been considered 
only by implication, through its association with soil moisture. This 
hypothesis is reasonable, but seems to be contradicted by the rising 
right-hand portion of the curve. 

Several disturbing factors may be responsible for thé peculiarity of 
this curve. One is associated with its data; the moisture determina- 
tions were limited to the top 0.6 centimeter of soil and may not be 
entirely indicative of the moisture content throughout the entire zone 
in which the disease was active. The second disturbing factor is that 
the present value of the dependent variable may depend on previous 
values of the independent variables as well as on their present values. 
The symptoms of damping-off may not be related entirely to the soil 
moisture during any particular instant or short period, but may 
rather be related to the moisture content at some previous period, or 
to the accumulated effects during a longer period, or to an optimum 
or critical value, and to the time or to the average value since the 
optimum or critical point was reached. 

It is evident, therefore, that a very complex relation may exist, not 
only in connection with soil moisture, but with evaporation and 
temperature as well. A certain optimum combination of these three 
variables may produce a maximum effect at a later date, depending 
upon the conditions obtaining during the interval. The data at hand 
are obviously inadequate, and additional information is necessary as 
to soil temperature and moisture at other depths, as well as a more 
continuous record of damping-off in which bona fide damping-off is 
distinguished from ordinary wilting. 

TIME SERIES 

The correlation of time series, in which values of one variable at 
given dates are correlated with values of other variables at those dates, 
is a most difficult problem for statistics. Experience, care, and 
extreme caution are necessary to avoid nonsense correlations (.^5). 
Such problems often involve periodic variations, which have com- 
monly been eliminated before correlating, as in the problem on damp- 
ing-off (p. 65). Errors are often introduced by such procedure and 
should be studiously avoided. The use of serial correlations (41) and, 
in curvilinear correlation, the use of seasonal and secular variations 
as additional variables offer a safeguard against illogical results. 
This phase of statistics is so complex and undeveloped that its presen- 
tation in this bulletin is inadvisable. The difficulties affect all 
graphical and statistical methods and are not peculiar to the technic 
herein described. 
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For the solution of such complex problems it must suffice to point 
out the possibility of using maxima {25, 26), minima, modes and 
means, seasonal trend and secular variation together, moving aver- 
ages, accumulations, values at previous times (lagging data), interval 
since a given occurrence, such as rainfall. 

MINOR VARIATIONS IN TECHNIC 
USE OF RATIOS 

The basic data for many problems may often be expressed both in 
absolute quantities and in ratios or percentages. Ratios, or per- 
centages, may have two uses, (1) as a more logical measure of the 
variable, as in the dextrose problem where the relationships change 
with the proportion, rather than the quantity of each chemical; and 
(2) to simplify the problem by reducing magnitude or range of num- 
bers, or by reducing curvature of the regression lines. In the first 
instance the ratios themselves are the data being investigated, while 
in the second the ratios serve merely as a means to an end. 

The second use occurs chiefly in constructing charts for predicting 
purposes. To consider such a chart satisfactory it is essential that, 
when checked against its basic data, the sum of the values estimated 
by means of the ratios shall not be appreciably higher or lower than 
the sum of the measured values in absolute units. Because of an 
uneven distribution of data a difference between these sums may 
exist even when the sums of the estimated and measured ratios are 
exactly equal. A correction of the estimates becomes desirable in 
such instances and may be made in one of two ways. The simplest 
way is to multiply each estimate by the ratio 
Sum measurements (absolute units)     r^^^ i   . ^ 

Sum estimates (absolute units) 
tion, more desirable when numerous estimates are made, is a mod- 
ification of the scale for the dependent variable, to increase or 
decrease the readings of the chart by the ratio given above. Thus, 
if the ratio were 1.02, the 1.00 graduation becomes 1.02, the 10.00 
graduation becomes 10.20, the 50.00 graduation becomes 50.00 X 1.02 
= 51.00, etc. A graduating curve through a few such points will 
permit a regraduation of the entire scale. 

GROUPED DATA 

The basic data for some problems may be so numerous that a pro- 
hibitive amount of work would be involved in making a separate 
estimate for each item. Averages by classes, such as diameter-height, 
age-site index classes, may be used in such cases, but all residuals 
must be weighted (multiplied) by the number of items in each class. 
When this is done a standard error of the class averages may be com- 
puted for following the improvement in estimates, but such a stand- 
ard error is meaningless as an expression of the variation in the 
original data, since the deviation of the averages is influenced greatly 
by the number of items entering into each average. For a true 
standard error a final estimate should be made for each item and 
the standard error computed from their deviations. When many va- 
riables are involved the number of items in each class may be so 
small that the time involved in weighting the averages overbalances 
the savings in number of readings of the chart. 
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INCOMMENSURABLE VARIABLES 

If some factors are not commensurable they may be ignored in 
the initial steps and their effects later analyzed as follows. A com- 
posite chart is prepared for all data, using commensurable variables 
only. The residuals of the final estimate from this chart are grouped 
by the recognized classes of the incommensurable variables (crown 
classes, localities, species, collector of the data, etc.). The departure 
of the average residual for each of these classes is a measure of the 
effect of the variable. 

EFFECT OF HIGH INTERCORRELATION OF INDEPENDENT VARIABLES 

Occasionally the existence of very high intercorrelation between 
two of the independent variables wul cause serious diíñculties. This 
can best be'illustrated by an extreme case, based on hypothetical 
data in which two of the variables, X and F, are by intent more 
closely correlated than they would be in any actual forestry problem. 
A group of values was calculated by means of the formula— 

= -V^-10log Y^Z^ 

A regression equation for these values was computed to be— 

W=+0.466X-0.958F+3.82Z-4.67 

The alienation coefficient was 0.290 and the standard error 1.65. 
This regression equation has the sign for X opposite to that in the 
basic equation, showing that it is seriously in error. 

After modification for curvature the alienation coefficient was 
lowered only to 0.276, from 0.290, and the standard error was 1.57, 
as compared with 1.67, the standard error of the first estimate. The 
discrepancy in the sign of X remained. 

This failure of the method is less serious than might first appear if 
a predicting mechanism is the chief aim. If one of the two variables 
which are highly intercorrelated is omitted, its influence will be car- 
ried into the final estimates through that which remains, its final 
regression curve being essentially a composite of the direct effect of 
one and the indirect effect of the other. In such cases a predicting 
mechanism is produced which, while based on but one of these va- 
riables, is nearly as accurate as if both highly intercorrelated variables 
had been retained. 

VARIABLES WITH SMALL REGRESSION  COEFFICIENTS,   BUT  WITH  CONSIDERABLE 
CURVATURE 

In certain problems it may sometimes be desirable toretain a va- 
riable when its linear regression line has little slope, but considerable 
curvature is expected, for in such cases the final influence of the va- 
riable may be considerably greater than is indicated by its regression 
coefficient. In preparing the alinement chart, a very small scale 
unit should be used for the axis representing such a variable, for sub- 
sequent corrections will almost certainly expand the scale, and some- 
times to an astonishing degree. A relatively small scale unit on one 
axis can be secured by locating it very close to the sum axis associated 
with that variable.    In such problems, moreover, the use of corree- 
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tion distances, as described in previous pages, usually results in a 
wide scattering of the points which makes curve fitting diJfficult. The 
method used in the bark-thickness problem—plotting the residuals 
around the net regression line, curving, and then transferring this 
curvature to the graduating curve—should therefore be substituted. 

The nearly horizontal position of the regression line may make an 
accurate transfer of the regression curve to the graduating curve 
difficult. To overcome this difliculty it may be desirable to copy 
both regression line and curve on to a new graph in which a much 
larger vertical (and smaller horizontal) scale is used, thus steepening 
the lines and facilitating the reading of their intersections with the 
with the horizontals of the cross-section paper. 

ASSUMED CHARTS 

The initial chart for each of the problems presented in these pages 
has been based on a regression equation, and is often radically changed 
in the subsequent steps. 
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FIGURE 32.—A, Curves of bark thickness resulting from use of assumed alinement chart; B, curves 
of bark thickness resulting from use of correlation alinement chart 

The radical nature of these changes suggests the possibilityTof 
starting with an assumed chart, thus eliminating the linear correlation 
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step. Varying success will attend such procedure, and the validity 
of the final results can seldom be checked except by comparing with 
those derived from a chart based on a multiple regression equation. 
There is, then, little to be gained by such procedure. The possibility 
of serious error from the use of haphazardly assumed charts can be 
illustrated by the following example, in which bark thickness at stump 
is correlated with breast-high diameter and total height. A multiple 
regression equation was computed to be— 

Bark thickness = 0.0598 Xd. b. h.-0.0054 X height+ 0.481 

An assumed chart was prepared with the height scale purposely 
made positive in sign to test the method. A comparison of the final 
curves shown in Figure 32, A and B, will show that those originating 
in a correlation are far more reasonable than those obtained with 
the assumed chart. The high intercorrelation between breast-high 
diameter and total height, together with the relatively small variation 
with height, combine to make difficult the definition of the correct 
relationship. 

INITIAL CORRECTIONS 

In each of the illustrative examples given, the first correction for 
curvature was made for the independent variables. It has been stated 
that a quicker development and stabilization of curvature sometimes 
results when the dependent variable is corrected for curvature first. 
This was true in a study defining the relation between board-foot and 
cubic-foot ratio of trees and their breast-high diameter and total 
height. In one such study the number of estimates necessary was 
reduced from five to three by correcting the dependent variable first. 
Quite naturally, also, each of the curves was better defined than those 
secured when the independent variables were corrected first. Un- 
fortunately, it is not possible, without previous experience with 
problems of the same kind, to tell which type of correction should be 
applied first. 

USE OF KNOWLEDGE OF CURVE FORM 

In connection with another study of the relation between the 
board foot—cubic-foot ratios and breast-high diameter and total 
height, an interesting example occurred of the use of knowledge 
of curve form. It can be deduced from a comparison of the board- 
foot contents of logs with their cubic-foot volumes that the board 
foot-cubic foot ratio will increase rapidly with an increase in the 
small diameters, and less rapidly with an equal increase in the large 
diameters, becoming nearly constant for very large logs but in no 
case showing a decrease. This should also hold true for trees, except 
that the ratio will be slightly lower because of the small top log 
always present and because of the top itself, which has no board-foot 
volume. 

First-estimate residuals for diameter breast high as computed and 
plotted about the original graduating curve are shown in Figure 33. 
The ciu"ve indicated has a sag in the center, and therein is unlike 
what the true curve is known to be. Accordingly the fitted curve 
(though correctly balanced) ignores this sag and assumes a contin- 
uously rising curve of regularly decreasing slope. 
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By ignoring this sag the final curves were obtained with only 
five estimates, as against the seven required when the sag was 
incorporated. 

8 »0 12 14 
D.b.h. (inches) 

16 16 20       22 

FIGURE 33.—Because of what is known of curve form the sag in the regression line indicated by 
the residuals over d.b.h.has been ignored, and a continuously rising, balanced curve was 
drawn through the points.   The correctness of this treatment is confirmed by the final curve 

RESIDUALS IN TERMS OF AN AUXILIARY REGULAR SCALE 

In the first problem presented in this bulletin, residuals were 
measured in two ways^—(1), in terms of the dependent variable 
itself (differences between measured and estimated values), and (2) 
for the final correction, in terms of an auxiliary regular scale. This 
second type of measurement was necessary, as was explained, 
because of the variable spacing of the final graduations for the depend- 
ent variable, which would not permit adding the correcting regression 
equation to the final chart. Similar situations occur wherever the 
dependent variable scale is modified after an estimate, and the 
measurement of all residuals by a regular scale might seem advisable. 
In some problems such a procedure is advisable and assures better 
results. In other cases the reverse is true, as in the dextrose problem. 
This is shown in Table 11, which lists the standard errors resulting 
from the use of each of the two types of measurement of residuals. 
Obviously, the better results were got when the residuals were 
measured in terms of the dependent variable. This table also lists 
the standard errors resulting from both types of treatment of the 
first problem. Here, the measurement of the residuals in terms of an 
auxiliary regular scale gave decidedly better results. 
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TABLE 11.—Comparison of standard errors of successive estimates in problems in 
which residuals were measured (1) in terms of the dependent variable, and {2) in 
terms of an auxiliary, regular scale 

A. DEXTROSE PROBLEM 

Residuals in terms of—    . 

Standard errors of successive estimates 

First Second Third Fourth Fifth Sixth Seventh Eighth 

Dependent variable   - 13.94 
13.94 

12.17 
12.23 

6.22 
6.81 

5.67 
8.07 

5.56 
7.23 

5.42 
6.89 

5.42 
7.15 Kegular scale ^      -     - -  •7.24 

B. PROBLEM (page22): (-V-VX+lOlog y 

Dependent variable- 
Regular scale  

1.14 
L14 

.50 

.50 
.48 
.48 

.36 

.36 
.33 
.29 

.28 

.22 
.27 
.21 

.24 

1 Note the increase in standard error in the fourth, seventh, and eighth estimates. 

A third course is to measure, not individual deviations, but class- 
average deviations in terms of the auxiliary regular scale. This may 
be particularly desirable when using correction distances, since the 
correction distance is a constant, times the length of scale covered 
by one unit of the dependent variable. When this imit length is 
changed by modifying the scale, the correction distance changes also» 
It is more logical, therefore, when using correction distances, to 
measure the residuals in terms of the scale unit on which the correc- 
tion distances are based, although, as indicated by the footnote on 
page 53, better results may often be obtained by applying correction 
distances to the residuals in terms of the dependent variable. 

Any convenient scale may be used for measuring these residuals, 
but since the original scale of the chart is regidar and already at hand 
it may be more desirable to use it in preference to another. The 
first-estimate residuals in terms of this regular scale are then identical 
with the residuals in terms of the dependent variable. 

No method has been discovered of foretelling which treatment is 
superior. The only possible procedure is to adopt one at random 
and watch the results closely. If the improvement is unduly small, 
especially when the curvature is great, one of the others should be 
substituted. 

FIELD OF APPLICATION 

The field of appHcation of the method presented in these pages is 
wide. It includes all branches of forest research in which quantita- 
tive measurements are made, wherever more than two variables are 
involved, and wherever curvilinear relations are suspected. It would 
be impossible to fist all or even a large proportion of the problems 
which may be solved by this technic, and it must suffice to point out 
a few scattered types. 

The various examples already illustrated show certain apphcations; 
possibihties exist for applying it to physiological studies, in associa- 
ting cell-sap density or osmotic pressure with site quality, soil and 
air temperatures, soil moisture, and position of samples in trees in 
absolute or percentage units of height; resin flow may be related to 
size and age of tree and to climatic factors; viabihty of seed,  as 
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affected by size, weight, age, and storage temperatures, may be 
studied ; germinative capacity of seed may be related to size and age 
of tree and site quality, or to length of storage, depth of planting, rain- 
fall, and temperature. 

In nursery practice, size of plants may be related to amount of fer- 
tiUzer or other chemicals, amount of water, and growing space. 

In fire studies the method may be useful in associating rate of spread 
with atmospheric and fuel conditions, or in predicting inflammability 
(fuel moisture) from atmospheric conditions. 

Skidding time, or cost, in logging studies may be correlated with 
log diameter, length, and skidding distance, or sawing time in the mill 
may be correlated with size, amoimt of defect, etc. 

In pulp and paper investigations, yields or breaking strength inay 
be related to composition of Hquor, temperature, pressure, duration 
of cook, percentages of species or types of pulp, etc. 

Correlation methods have been used so much in economic studies 
that the place of this method in forest economics is obviou?. Many 
economics problems, however, require the correlation of time series, 
which, as noted before, require extreme care. 

When to use the method can be decided only after consideration of 
the kind and characteristics of the data available. In 3-variable 
problems, where the curves are similar in form, and where there is no 
intercorrelation between the independent variables, as in yield tables, 
the use of anamorphosis or other analogous methods will give results 
more quickly. 
. In connection with controlled experiments, the value of the method 
is not always sufficient to warrant its use. If the results are erratic, 
however, it may pay to use it as a smoothing medium, as in the dex- 
trose problem, and for ease of estimating, as well as for interpreting 
the results. 

CRITERIA OF APPLICABILITY 

The criteria by which to judge the possibiHties for solution of any 
particular problem by this method are not rigid. The initial aUena- 
tion coefficient gives some indication, but must not be given too much 
weight. For instance, in a taper-curve problem, obtaining diameters 
at any point from percentage height of the point, diameter breast 
high, and total height, the aUenation coefficient was only 0.354. 
This was low, but the regression equation represented the best- 
fitting cones, and obviously was not a good fit of the data, although, 
as a starting point for further investigation, it is quite satisfactory. 

On the other hand, a high ahenation coefficient between the 
variables may not prevent a satisfactory solution. In the construc- 
tion of a cubic-foot volume table from correlated form factors the 
ahenation coefficient was 0.929 and the final ahenation index was only 
reduced to 0.909. The resulting volume table was satisfactory 
because the range of form factor values was very small (/S'Z>=| 0.0432). 
Since the volume of a tree is determined chiefly by its height and 
diameter (volume = height X basal area X form factor) a small varia- 
tion in form factor produces only a smaU change in volume. In 
other words, the form factors are used here merely to compute vol- 
umes and have no other significance. It is proper, therefore, to 
measure accompUshment by the final ahenation index in volume 
rather than in form factor.    If this is done a value which is very 
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mucli lower (approximately 0.099, instead of 0.909 for form factor) is 
obtained. 

Experience and good judgment will help a great deal to decide 
what procedure should be followed, and good judgment must be exer- 
cised at all times to avoid dogmatic acceptance of unreasonable 
results. The nature of such results may suggest the possibility of 
using cumulations, ratios, logarithms, etc., which may very possibly 
clear the situation. Converting the original data and working entirely 
with logarithms may give the proper answer in those cases where 
deviations are more nearly constant percentages, rather than constant 
absolute values. 

SUMMARY 

Purely graphic methods are inadequate for the solution of many 
forestry problems. They are too dependent on the judgment of the 
investigator, have led to serious errors, and as ordinarily appUed yield 
results which are unchecked as to accuracy and un appraised as to 
accompUshment. They are inappHcable to cases involving more 
than three variables, and even where three are involved they demand 
enormous numbers of data in order to produce fairly satisfactory 
results. 

The concepts of the modem science of statistics may be appUed 
to graphs and curves. By this means a large gain in accuracy 
over the familiar graphic processes may be obtained. The common 
statistical processes, however, are too rigid in their assumptions to 
be useful in many forestry problems. 

The curvilinear-correlation method combines graphic and statistical 
technic. The former contributes flexibihty, the latter accuracy. 
The basic assumptions are so generaUzed that a very wide range of 
problems may be solved by it, yet the results are rigorously checked 
and appraised. It permits a solution of many problems previously 
considered insoluble on account of complexity or number of data 
required. 

The computations seem laborious, but the extra work involved in 
the office is often fully compensated by the reduction in the number 
of field data. Where this compensation is only partial the greater 
total labor of the new method is fully repaid by the better results 
obtained and by an accurate knowledge of what has been 
accompUshed. 

The technic has numerous variations. A careful choice should be 
made among them, dependent on the pecuUarities of the problem 
being studied. It follows that this technic does not lend itself to 
mechanical handling.   Intelligent alertness is an essential to success. 

The final result is in the form of an alinement chart. While a table 
or tables may and doubtless will be read from this, the chart is an 
exceedingly compact method of presenting a complex relation. It is 
particularly convenient where many interpolations would be necessary 
if the tabular form were substituted. 
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APPENDIX 

SHORT-CUT METHODS 

STATISTICAL MEASURES 

Many of the computations involved in the methods which have been discussed 
are formidably laborious, particularly where large numbers of data are used. 
Fortunately, numerous short-cut methods have been devised. These have not 
previously been described because to do so would have merely confused the 
reader who had not yet gained an adequate comprehension of the principles 
involved. The formulae used heretofore are simpler to understand, while the 
short-cut formulae are easier to apply. 

It is not necessary to list here all the abridged methods which have been devised, 
and only those which are most useful to forestry workers will be given. Three of 
these are based on the following identities— 

Sum d2^=Sum Z2-iVM2x 

_iV(SumZ2)-Sum2X 
— ^    v-^iv> 

and— 
Sum idxdY)=SumXY-NMxMY 

_iV(Sum XY) - (Sum X) (Sum Y) .^^.. 
"" N   -^^^^ 

where, as before, X and Y are two variables, Mx is the mean value of X, My is 
the mean value of F, while dx and dy signify the deviations of the values of X 
and Yj respectively, from their means. The formulae which have previously 
been used for standard deviation, alienation coefficient, and the regression equa- 
tion may, therefore, be modified as follows— 
Standard deviation (p. 7)- 

Söx=V^^-- -----(Il) 
Substituting from equation XIV— 

SDx- 

Regression equation (p. 10)— 

^^^^ViV(Sumy-Sum^X___ ^^^^^ 

^=^-+£ft^(^-^-)--  (^> 
Substituting from formulae XIV and XV— 

Ar(SumXy)-(SumZ)(Sumy) 
Y-Mr+ N(.SixmX>)-Sum'X    (-^"^x) (XVII) 

Alienation coeflBcient (p. 12)— 

ACxr-y 1- (g„^ d^x) (Sum ,Py)  (^I) 

Substituting from formulae XIV and XV— 

AC    -J\ [^(Sum X7)-(Sïïm X)(Sum Y)]^ /vvTrn 
AOxy-y i   [i\r(SumZ2)-Sum2Z][Ar(Sum F2)_Sum2F] —C^Vlll) 

Correlation coefficient (p. 8)— 

CCxY='y¡l-{ACxYy .(IV) 

____iV(Sum XY)-(Sum X)(Sum Y) 
V[iV(Sum X2)-Sum2Z][Ar(Sum 72)_Suni2FJ'""""""'^     ^ 

It will be observed that the revised equations XVI to XIX contain but a few 
basic quantities, which are combined in different ways. This means that a 
single calculation can be performed which will yield the basic values necessary 
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for the computation of standard deviation, alienation coefficient, and the regres- 
sion equation. These basic values are the sums of each variable, their means, 
the sums of the squared variables, and the sums of their products when multiplied 
together in pairs. 

As an example, the new formula will be used in connection with the material 
presented in Table 3.    Table 12 illustrates the short-cut method. 

TABLE 12.—Short-cut method of calculating standard deviationSy regression equation, 
and alienation coefficient 

Age-(X) 

(1) 

Meas- 
ured 

d.b.h.— 
(Y) 

(2) 

XY 

(3) 

X» 

(4) (5) 

Age-(X) 

(1) 

Meas- 
ured 

d.b.h.- 
(Y) 

(2) 

XY 

(3) 

X« 

(4) 

Y» 

(5) 

16 
19 
22 
25 
29 
34 
43 
46 
62 
66 
68 
66 

6.0 
9.7 

10.6 
14.0 
12.7 
16.6 
18 0 
19.6 
21.0 
19.0 
22.6 
24.0 

90.0 
184.3 
231.0 
350.0 
368.3 
661.0 
774.0 
877.5 

1,092.0 
1,046.0 
1,305.0 
1,560.0 

225 
361 
484 
625 
841 

1,156 
1,849 
2,025 
2,704 
3,025 
3,364 
4,225 

36.00 
94.09 

110.25 
196.00 
161.29 
272.25 
324.00 
380.25 
441.00 
361.00 
506.25 
676.00 

66 
75 
75 
81 
88 
89 
91 

100 

22.1 
22.0 
24.0 
25.0 
25.0 
23.5 
25.1 
24.5 

1,458.6 
1,650.0 
1,800.0 
2,025.0 
2,200.0 
2,091.6 
2,284.1 
2,450.0 

4,356 
6,625 
5,625 
6,561 
7,744 
7,921 
8,281 

10,000 

488.41 
484.00 
676.00 
625.00 
625.00 
652.26 
630.01 
600.25 

1,127 
56.35 

384.6 
19.23 

24,397.3 
1,219.86 

76,997 8,039.30 

£;D, __V20(8039.30) - (384.6)'   ^^„^ 
(XVI) 

r= 19.23+ (20) (24397.3) - (1127) (384.6)^^^ 
(20) (76997)-(1127) 

= 19.23+0.202 (X-56.35) 
=0.202X+7.85 

-56.35) --(XVII) 

AC. 'XY^^I-^ 
[(20) (24397.3) - (1127) (384.6)P 

[(20) (76997)- 
=Vl-0.8555 
=0.380 

■ (1127)2] [(20) (8039.30) - (384.6)2]- -(XVIII) 

Where these short-cut methods 2^ are used, the standard errors, coeflBcients of 
correlation, etc., may readily be derived from the standard deviations and alien- 
ation coefficients. 

The time saved by this procedure is obviously considerable, since the individual 
deviations need not be computed. The slightly greater complexity of the 
formulas themselves is negligible where any considerable number of data are 
involved. The seven columns of Table 3 have been reduced to the five col- 
umns of Table 12. To offset this advantage, in part, the actual figures handled 
have become larger. Furthermore, the number of significant figures which must 
be retained has increased. It will be noted that each of the new formulae involves 
the subtraction of one large number from another in one or more instances. 
These large numbers may be nearly the same in value, and where this is the case, 
one or more of the left-hand digits disappears. In addition, the process of extract- 
ing the square root cuts the number of significant figures about in two. As a 
result, it is often necessary to retain six or seven significant figures in the early 
parts of the computation in order to insure accuracy to two or three figures in 
the values sought. The slide rule is therefore not suitable for work of this 
nature, and a good calculating machine is almost essential to efficiency. Where 
very large numbers of data are involved, a great saving in time can be made by 
the use of electrical tabulating machinery. 

The use of machines effects a considerable saving in the computation of regres- 
sion equations.    If a calculating machine with the carry-over feature in the result 

w Another short-cut method of computing standard deviations is described in Croxton (6), 
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dial is available, as in certain models of the best-known makes, the sums of X^ 
X\ and XY, or similar combinations can be obtained at one operation. 

To do this put Y in the left-hand side of the keyboard, X in the right-hand 
side, and multiply by X, thus entering FX-X" and XXX or X^ in the carriage 
dial, and X in the result dial. Do not clear these dials. Enter each item in 
the same manner and when all items have been thus entered the carriage dial 
will contain Sum (YXX) and Sum (X^), and the result dial will show Sum (X), 

For a 3-variable problem involving X, Y, and Z, three such sets of sums are 
required.    These may be taken for— 

(1) Sum (X), Sum (X^), and (first run), Sum (XY), or (check run) Sum (XZ); 
(2) Sum (Y), Sum (Y^), and (first run), Sum (FZ), or (check run) Sum (YX); 
(3) Sum (Z), Sum (Z^), and (first run), Sum (ZX), or (check nm) Sum iZY). 

PUNCHED-CARD   TABULATING  EQUIPMENT 

Those who have punched-card tabulating equipment (54, p. 94) available will 
be able to materially reduce the amount of labor involved in computing the 
regression equation when a large amount of data are involved. About 200 to 
250 items, to be sorted at least three times, is the smallest amount which will 
be handled by this equipment with any saving in time. Large groups of data> 
especially if more than three variables are involved, are handled at a very great 
saving of time and effort. 

A special technic for using this equipment in correlation problems has been 
de vised.28 This technic caUs for the used of coded values, thereby permitting 
the use of automatic checks throughout the progress of the computations. 

Coding is frequently used in naechanical and other methods to reduce the size 
of large numbers, as well as to permit the use of the checking system mentioned 
above. 

By subtraction, division, or both, and rounding off, the values are reduced to 
a small series of whole numbers, preferably ranging from 0 to about 15. A range 
as small as from 0 to 10 or as large as from 0 to 30 is satisfactory. Coding is essen- 
tially a grouping of the values into numbered classes in such a way that the 
grouping may be expressed algebraically. For example, in the bark-thickness 
problem on page 54, diameter ranged from 4 to 15 inches, covering 12 inch- 
classes. These numbers may be reduced in size by subtracting four from each 
class, the coded classes then ranging from 0 to 11.   The coding may be expressed— 

Coded d. b. h.=d. b. h, (nearest inch)—4. 

Total height ranged from 25 to 90. When each height is reduced by 25, the 
range becomes 0 to 65. This can further be divided into sixteen 4-foot classes. 
The coding can be expressed— 

Coded total height-3:2MJl|iM=25 

Easily handled subtrahends and divisions, for easy mental calculation of coded 
values, should be used. The accuracy of the work is in no wise affected when 
data are coded by subtraction. Accuracy, however, is affected to some extent by 
coding by division, the accuracy decreasing as the divisor increases. The errors 
involved are similar to those resulting from measuring, for example, diameters to 
the nearest inch, or nearest even inch. The inaccuracies involved are not great, 
but should be given consideration in preparing the data. In no case should there 
be less than 10 coded classes for any variable. 

AVERAGE ERROR 

When the data are numerous enough to justify thé use of special equipment it 
is also justifiable, in general, to use the average error rather than the standard 
error to follow the improvement with each approximation. The foUowing short 
cut may be used in computing this value. 

Total separately the measured and estimated values of all items for which the 
measured value exceeds or equals ^ the estimated value. The difference between 
these totals is the sum of the positive deviations. 

» SMITH, B. B. THE USE OF PUNCHED-CAKD TABULATING EQUIPMENT IN MULTIPLE CORRELATION PROB* 
LEMs.   U. 8. Dept. of Agr. Bur. Agr. Econ. 1923.   [Mimeographed.] 

" Those which are equal could be omitted entirely or included in the next step, without affecting the 
average error in absolute units, but are necessary if the average error or aggregate deviation is to be com- 
puted as a percentage of the mean value of the variable. 
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Repeat for items in which the measured values are less than the estimated. 
The sum of the negative deviations is thus obtained. 

The sum of the positive and negative deviations, disregarding signs, divided 
by the total number of items is the average error (AE), The two totals of meas- 
ured values obtained above may be summed to obtain an aggregate of the 
measured values, and similarly the aggregate of estimated values may be obtained. 
Aggregate estimated minus aggregate measured^ gives the aggregate deviation 
(observe sign) in the units used. This value, divided by the aggregate estimate 
and multiplied by 100 gives the aggregate deviation per cent. 

AVERAGE DEVIATION FROM THE MEAN 

A method somewhat analogous to that used for determining the average error 
may be used to compute the average deviation (AD) as follows: 

Determine the mean. Sum the items greater than the mean. Multiply the 
number of such items by the mean and subtract the product from the sum 
determined above. Double the difference and divide by the total number to 
obtain the average deviation. 

SYMBOLS 

There is no universally accepted system of symbols for statistical measures» 
Systems most widely used have employed Greek letters, but these are inconvenient 
where the study is to be written up on the typewriter. Throughout this bulletin 
initial letters have served as symbols. Their advantages are that they are 
easily remembered and that they can be employed in typewritten manuscripts 
without inconvenience. 

The symbols employed in this bulletin are listed below with their common 
equivalents.   Alternative designations are given in parenthesis. 

Symbol Designation Equivalent 

AC.  
ACxr.... 
ACrx... 
AD  
AE  
^/—... 
Bxr  
BYX  
CC.  
CCxT... 
CCYX... 
CI  
CIxY..-. 
CIYX.... 
d  
dx  
e , 
«1, et  
exf e/ix). 
M.  
Mx  
N.  
SD  
SDx  
SDM  
SE.  
Sum( )-. 
Sum>( ). 
8um(   )». 

Alienation coefficient  
JAlienation coefficient between Xand F.  
Average deviation  
Average error  
Alienation index ,  
Partial regression coefficient of X on F.  
Partial regression coefficient of Fon X.  
Correlation coefficient  

jCorrelation coefficient between Xand F. _  
Correlation index  

JCorrelation index between Xand F.  
Deviation from mean  
Deviation of Xfrom mean of X.._.-_  
Residual (error, or deviation of individual item from curve) 
Besidual of first, second estimate  
Residual expressed in terms of X, in terms of function of X. 
Arithmetic mean   
Arithmetic mean of X_  
Number of items  
Standard deviation  
Standard deviation of X. _ 
Standard deviation of mean (standard error)  
Standard error (standard deviation about curve) .-.. 
Sum of all values of s3nnbol which follows ^..-. __. 
Squared sum of all values of symbol which follows.._..  
Sum of squares of all values of symbol which follows ^- 

k. 
fkxY. 
XkYX. 

ßXY. 
ßTX. 
r. 
rrxr. 

fPxt. 
\PYX. 

n. 
ff or *. 
<rx or 9X. 
S. 

2«(   ). 
S(  )«. 

Standard error (p. 6)-— 

S^=VT— 
standard deviation (p. 7)— 

Alienation index (p. 8)— 
SE 
SD  

FORMULAE 

AI'- 

-(I) 

.(II) 

-(III) 
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Correlation index (p. 8)— 

CI='^Jl-(AIy --(IV) 

Regression equation (p. 10)— 

^=^''+S^(^-^-)   (v> 
Alienation coefficient (p. 12)— 

ACxy=-yJl- ^Q^J'^l gum d^) " ^^^^ 
Multiple regression equation (p. 16)— 

W=Mw+Bwx^{X-Mx)+BwY^(Y-My) (VII) 

Normal equations—three variables (p. 17)— 

^WX-\-CCXYBWY=CCWX\    _ _ _  __ (VIII-A) 
CCYXBWX-\-BWY=CCWY} 

Normal equations—four variables (p. 17)— 

BWX-\-CCXYBWY-\' CCXZBWZ= CCWX) 
CCYXBWX ~t" BwY"}" CCYZBWZ=^ CCWYí (VIII—B) 
CCZXBWX-\-CCZYBWY-\-BWZ= CCWZ] 

Alienation coefficient (p. 18)— 

ACwixYZ- -)=V ^ — {BWXCCWX-\-BWYCCWY-\- BWZCCWZ-\- ) (IX) 

Alinement chart formulae (pp. 41-42)— 
i7=L/(   ).... .____._„ (X) 

^-éfe (^« 
§Y-t ----(XII) 

Correction distances (p. 50)— 

cor. X=^~yLz - ._.__(XIII-A) 

cor. Y^^Lz : - (XIII-B) 

Shortcut formulae (pp. 76)— 

Sum d.,=^(SumZ^-Sum^X______  .......(XIV) 

Sum fed.)=^(«"°' XF)-(Sum X)(Sum Y)   __ _ ......(XV) 

^^^JjfiSumX^)-^   .....(XVI) 

Regression equation (p. 76)— 

iy(Sum XT)-(Sum X) (Sum Y) „ 
Y-My+ N(.SximX^)-Snm^X ^^    ^^^ ^^^"^ 

jr    -   I i             [iy(SumZy)-(Sum"X) (Sumr)F rXVTm 
^oxr--y/i     [iV(SumX2)-Sum2X][iV(Sum n-Sum^F] (.^viix; 

iV(Sum XY)- (Sum X) (Sum Y) 
^^   V[Ar(Sum X2)-Sum2X] [iV(Sum F2)-Sum2r] '•^ ^ 



TABLE 13.—A list of representative regression equations and their associated statistical measures 

LABORATORY TESTS—1 GRAM DEXTROSE IN 25 CUBIC CENTIMETERS SULPHURIC ACID FOR 30 MINUTES 

Dependent variable Independent variables and regression coefficients Constant 
Num- 
ber of 
items 

Mean of 
depend- 

ent 
variable 

SD of de- 
pendent 
variable 

Esti- 
mate 

number 

SE of 
dependent 
variable 

AC AI 

Residual dextrose (per cent). /—12.7556 sulphuric acid (per cent). 
L.7431 temperature (° C.)_ }   +378. 4227 32 61.68 33.13 5.42 0.421 0.164       S 

LABORATORY TESTS ON LONGLEAF PINE 

Yield of crude pulp (per cent)... 
-0. 

1-2. 

—0.4742 NajO (pounds per 100 pounds of chips).  
'^ 2306 steam pressure (pounds per square inch gauge)  

1274 total time of cooking (hours)  
+95.2686 73 50.51 12.44 6.04 0.486 

CONIFEROUS SEEDLINGS IN NURSERY 

Seedlings damped-ofl per hour 
(per cent of initial number). 

-0.0469 age (days)  
-0.0069 soil temperature (" E.)  
+0.0288 evaporation (cubic centimeter per hour)  
—0.0039 soil moisture, top 0.6 centimeter (per cent). 

+1.4713 0) 0.11 0.119 0.058 0.785 0.485 

SECOND-GROWTH SHORTLEAF PINE STEM MEASUREMENTS 

Single bark thickness (inches).. _ 

Single bark thickness (inches)... 

+0.06263 d. b. h. (inch) of tree  
-0.00752 height (foot) of tree  
+0.00519 age (year) of tree  
-0.02068 d. i. b. (inch) of section  
-0.000941 height (foot) of section   
-0.009873 height (per cent of total) of section.. 
—0.00447 age (years) of section  
.+0.00078 site index (height in feet at 50 years). 
+0.07034 d. b. h. (inch) öftre  
-0.00600 height (foot) of tree  
-0.03324 d. i. b. of section..  
—0.00978 height (per cent of total) section  

+0.75076 Î515 0.382 0.300 1 

+.78716 »516 .382 .300 

Í        1 
2 
3 
4 
6 

0.172 

.173 

.129 

.124 

.123 

.121 

0.575 

.677 
0.430 
.413 
.410 

I Records for 32 days. > 124 trees. 00 



TABLE 13.—A list of representative regression equations and their associated statistical measures—Continued 
SECOND-GROWTH SHORTLEAF PINE STEM MEASUREMENTS—Continued 

00 

W 
M 
O 
> 

Dependent variable Independent variables and regression coeflQcients Constant 
Num- 
ber of 
items 

Mean of 
depend- 

ent 
variable 

SD of de- 
pendent 
variable 

Esti- 
mate 

number 

SE of 
dependent 
variable 

AC AI 

Single bark thickness residuals, 
fifth estimate (inches). 

Single bark thickness (inch). 

Single bark thickness (inch), 

+0. 
-0. 
-0, 
-0, 
+0. 
•-0. 
-0, 

(+0. 

l+O. 

,000400 d. b. h. of tree..  
,0000862 height of tree   
,00162 d. i. b. of section  
,000132 height (per cent of total) section.- 
,04979 d. b. h. of tree   
,00666 height of tree   
,00734 height (per cent of total) of section., 
00364 d. b. h. of tree...  
00771 height of tree.. -  
.03717 d. i. b. Of section  

-t-.0174 

-f. 70228 

-.31694 

»515 

Î515 

»515 

.069 

.382 

.123 

.300 

.300 

.1175 

.177 

.955 

.893 

SECOND-GROWTH LOBLOLLY PINE STEM MEASUREMENTS 
to 

O 

Stump bark thickness (inches) _. 

Stump d. i. b, (inches)  
Bark thickness at half height 

(inches). 
D. i. b. at one-half height (inch). 

D. i. b. (inches).. - .- 

D. i. b. (inches) -  

-fO.0615 stump d. i. b  
-0.0033 total height  
+0.948 d. b. h  
+0.0147 total height  
+0.0384 d. i. b. at one-half height  

0.0024 total height  
+0.6060 d. b. h ,... 

1+0.0081 total height  
+0.5873 d. b. h. of tree — 
+0.0138 height of tree.  
+0.0121 age of tree -—  
—0.0734 height (per cent of total) of section.. 
+0.5876 d. b. h. of tree  
+0.0239 height of tree.-  
—0.0733 height (per cent of total) of section.. 

}      +0.4585 

-.32 

+.1686 

-.2657 

+2.2141 

+2.5793 

»365 0.795 0.266 1 

»355 8.87 3.36 1 

»355 .23 .091 1 

»355 5.63 2.13 1 

»515 6.66 3.02 1 

«615 5.56 3.02 1 

0.218 0.820 

1.06 .315 

.076 .835 

.482 .226 

1.07 .355 

1.07 .355 

Ö 

O 

S 
O 
d 

a 



SECOND-OROWTH SLASfî Í»INE 

D. b. h  

Total height  

Form factor  

From factor (residuals)....  
Volume, entire stem less bark 

(cubic feet). 
Po  

Board feet (Int. H-in.) per cubic 
foot. 

r-.00404 d. b. h.. 

—7.5900 form factor (cylinder). 
,+.1694 height (total)  
r+4.3205 d. b. h  
\4-69.650 form factor (cylinder). 

-.00145 height (total). 

+.001185 d. b. h  
.-. 000154 height (total)  
+3.9805 d. b. h  
,+.0758 height (total)  
r+31.2800 basal area (square feet). 
+.1621 height (total)  
+. 14341 d. b. h  
.+. 014663 height (total)  

}   +1.1892 »269 9.86 3.62 1 

}   -1.2091 

}     +.33350 

»269 

»269 

68.77 

.394 

16.29 

.0432 

1 
3 
6 
1 
2 
3 
4 
6 

}     -.001138 »269 . 119 .0382 1 

} -25.4615 »269 18.98 16.29 1 

} -10.9545 »269 18.98 16.29 1 

1   +0.02864 »269 5.15 1.169 «1 

1.836 
3.36 
2.47 
2.29 
.032 
.031 

(AD). 030 
.030 
.030 
.03819 

4.72 

3.34 

.523 

.379 

0.607 
.206 

""0.152 
.141 

•     .741 

.9997 

.290 

.205 

.447 
""".'§24 

SECOND-GROWTH SHORTLEAF PINE 

Board feet (Int. H-in.) per cubic 
foot. 

r+0.1511 d. b. h  
1+ .0748 height (total). }   - 1.8038 »227 4.73 1.94 U 1.38 

.706 
0.711 

0.364 

SECOND-GROWTH LOBLOLLY PINE 

Board feet (Int. H-in.) per cubic 
foot. 

r+0.1973 d. b. h  
\+ .0612 height (total). }   -^ 0596 »294 4.31 2.16 L24 0.674 

SECOND-GROWTH LONGLEAF PINE 

Board feet (Int. H-in.) per cubic 
foot. 

Board feet (Doyle)   per  cubic 
foot. 

-H).2609d. b. h........ 
.0382 height (total). 

-H). 3158 d. b. h  
.-- . 0203 height (total). 

-0.4634 » 377 4.61 1.23 1 

42313 »377 3.76 h ?^ 1 

0.546 
(AE)   .666 

.445 
(AE)   .322 

0.443 

.276 

» 124 Trees, » Trees. * Final. 

00 
00 



TABLE 13.—A list of representative regression equations and their associated statistical measures—Continued 
SE COND-GROWTH WESTERN WHITE PINE, YIELD AND VOLUME MEASUREMENTS 

^ 

O 
W 
M 
O 
î> 
IT« 

d 

H* 
O 

çl 

Dependent variable Independent variables and regression coefficients Constant 
Num- 
ber of 
items 

Mean of 
depend- 

ent 
variable 

SD of de- 
pendent 
variable 

Esti- 
mate 

number 

SE of 
dependent 
variable 

AC 

0.0397 0.810 

.0398 .812 

.0398 .812 

AI 

Form factor (cylinder)- 

Do. 

Do- 

-0.00642 d. b. h. of trees  
+ . 00001 total height of trees  
+ . 00005 site index of stand _. 
+ . 00013 age of stand   
+ .00007 density of stand  
(per cent of normal BA) of stand  
+ . 00003 per cent of white pine (BA) of stand  
- .00668 d. b. h. of tree _  
4- . 00009 height of tree   
+ . 00008 site index of stand ,   
4- . 00009 per cent white pine (BA) of stand  
+ . 00026 per cent tolerant species (B A) of stand. 
— .00669 d. b. h. of tree  
+ . 00009 height of tree  
4- . 00010 per cent white pine (BA) of stand  
4- . 00026 per cent tolerant species (BA) of stand. 

-H). 48045 

+.48911 

-1-. 49309 

»649 

«649 

'649 

0.437 

.437 

.437 

0.049 

.049 

.049 

MATURE WESTERN YELLOW PINE 

Frustum form factor (average by 
locahty)  

+0.0112 average d. b. h  
— . 0001 average merchantable length 
— . 0010 site index  

. (Merchantable height at maturity).. 
-f 0.8392 »493 0.990 0.188 0.148 0.787 

O 

> 
O 
►H a 
d 

»Trees » Locality averages (11,276 trees). 
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